Real Analysis Ph.D. Qualifying Exam Temple University January, 2015

• Justify your answers thoroughly.

• You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.

• For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Part I (Do 3 problems)

I.1. Let $\{f_n\}$ be a sequence of Lebesgue measurable functions on \mathbb{R}^n . Suppose you have an estimate of the form

$$\int_{R^n} |f_n| \le c_n \text{ where } c_n \downarrow 0.$$

Can you conclude that $f_n \rightarrow 0$ a.e.? If not, what additional condition(s) on $\{c_n\}$ would guarantee this?

I.2. Let $f \in L^{\infty}[0, 1]$ and assume that *f* is not identically zero. Show that the limit,

$$\lim_{p\to\infty}\frac{\int_{0}^{1}|f|^{p+1}dx}{\int_{0}^{1}|f|^{p}dx},$$

exists and compute it.

I.3. Let $F(y) = \int_0^\infty e^{-xy} \frac{\sin x}{x} dx$, y > 0. (a) Show that *F* is continuous on $(0, \infty)$. (b) Prove $F'(y) = -\int_0^\infty e^{-xy} \sin x dx$, y > 0.

I.4. Let $A \triangle B = (A \setminus B) \cup (B \setminus A)$ denote the symmetric difference of sets *A* and *B*. Let A_n and B_n be measurable subsets of *R*. Suppose $\lambda(A_n \triangle B_n) = 0$, for all *n*, where λ is the Lebesgue measure.

(a) Show that $\lambda[(\bigcup_{n=1}^{\infty} A_n) \triangle (\bigcup_{n=1}^{\infty} B_n)] = 0.$

(b) Show that

$$\lambda[(\limsup_{n\to\infty}A_n)\triangle(\limsup_{n\to\infty}B_n)]=0,$$

where $\limsup_{n\to\infty} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$.

Part II (Do 2 problems)

II.1. Let *S* be a measurable subset of \mathbb{R}^2 . Assume for every $x \in S$ there exists a sequence of cubes $\{Q_k(x)\}$ centered at *x* with side lengths tending to zero such that

$$|S \cap Q_k(x)| \leq \frac{1}{2}|Q_k(x)|.$$

Show that |S| = 0.

II.2. A sequence of functions $\{f_n\} \in L^1[0, 1]$ is said to be *uniformly integrable* if

$$\lim_{c\to\infty}\sup_{n\geq 1}\int_{x\in[0,1];|f_n(x)|>c}|f_n(x)|dx=0.$$

If for such a sequence it holds that $f_n \to f$ almost everywhere for some measurable f, prove that $f_n \to f$ in $L^1[0, 1]$ norm.

II.3. Prove that

$$\int_0^\infty \frac{\sin t}{e^t - x} dt = \sum_{n=1}^\infty \frac{x^{n-1}}{n^2 + 1},$$

for -1 < x < 1.