Real Analysis Ph.D. Qualifying Exam

Temple University

January, 2014

- Justify your answers thoroughly.
- You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.
- Notation: $\mathbb R$ and $\mathbb N$ denote the set of real numbers and the set of natural numbers, respectively, and λ stands for the Lebesgue measure on \mathbb{R} .
- For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Part I. (Do 3 problems):

I.1. Show that for any Lebesgue measurable set $E \subseteq \mathbb{R}$ with $\lambda(E) = 1$ there exists a Lebesgue measurable set $A \subseteq E$ with $\lambda(A) = \frac{1}{2}$.

I.2. Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be two continuous functions such that there exists $E \subseteq \mathbb{R}$ Lebesgue measurable such that $\lambda(E) = 0$ and $f|_{E^c} = g|_{E^c}$ (here the vertical bar denotes the restriction and the superscript "c" stands for complement). Show that $f(x) = g(x)$ for each $x \in \mathbb{R}$.

I.3. For the following: if your answer is "yes", provide an example; if your answer is "no", provide a proof.

(a) Does there exist a real-valued function of a real variable that is continuous at every rational and discontinuous at every irrational?

(b) Does there exist a real-valued function of a real variable that is continuous at every irrational and discontinuous at every rational?

I.4. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions of bounded variation on the interval [0, 1] and assume that $f_n \longrightarrow f$ as $n \to \infty$, pointwise on [0, 1], and that there exists a finite constant $M > 0$ such that

$$
V[f_n; 0, 1] \le M, \qquad \forall n \in \mathbb{N}.
$$

Here, if g is some real-valued function on [0, 1] then $V[g; 0, 1]$ denotes the total variation of g on [0, 1]. Show that f is of bounded variation on [0, 1] and that $V[f; 0, 1] \leq M$.

Part II. (Do 2 problems):

II.1. Let $p \in (0, \infty)$ and recall that a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is said to be in weak- $L^p(\mathbb{R})$ if f is Lebesgue measurable and there exists $C(p) > 0$ (a constant depending only on p) such that

$$
\lambda\Big(\big\{x:|f(x)|>t\big\}\Big)\leq C(p)t^{-p}\quad\text{ for all }\quad t>0.
$$

Show that if f lies both in weak- $L^p(\mathbb{R})$ and weak- $L^q(\mathbb{R})$ for $1 \leq p \leq r \leq q \leq \infty$ then $f \in L^r(\mathbb{R})$.

II.2. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue integrable function. Show that

$$
\lim_{t \to \infty} \int_{\mathbb{R}} f(x) \cos(xt) \, d\lambda(x) = \lim_{t \to \infty} \int_{\mathbb{R}} f(x) \sin(xt) \, d\lambda(x) = 0.
$$

II.3. Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a Lebesgue integrable function. Show that

$$
\lim_{n \to \infty} \int_{\mathbb{R}} f(x) \sin^2(nx) d\lambda(x) = \frac{1}{2} \int_{\mathbb{R}} f(x) d\lambda(x).
$$