Real Analysis Ph.D. Qualifying Exam

Temple University

January 2013

- Justify your answers thoroughly.
- You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.
- Notation: $\mathbb R$ and $\mathbb N$ denote the set of real numbers and the set of natural numbers, respectively, and dx indicates integration with respect to the Lebesgue measure on \mathbb{R} .

Part I. (Do 3 problems):

I.1. Consider the sequence $\{f_n\}_{n\in\mathbb{N}}$, where for each $n \in \mathbb{N}$ the function $f_n : [0,1] \to \mathbb{R}$ is absolutely continuous and satisfies $f_n(0) = 13$ and

$$
\int_{[0,1]} |f_n'|^4 \, dx \le 7.
$$

Prove that $\{f_n\}_{n\in\mathbb{N}}$ has a subsequence that converges uniformly to a continuous function on [0, 1].

I.2. Let (X, \mathfrak{M}, μ) be a measure space and $f : (X, \mathfrak{M}) \longrightarrow [0, \infty]$ be a measurable function such $that$ \boldsymbol{X} $f d\mu = 3$. For each $n \in \mathbb{N}$ consider the function $g_n : (X, \mathfrak{M}) \longrightarrow [0, \infty]$ given by

$$
g_n(x) := n \cdot \ln\left(1 + \frac{f(x)}{n}\right), \qquad \forall \, x \in X.
$$

Show that g_n is a measurable function for each $n \in \mathbb{N}$ and that

$$
\lim_{n \to \infty} \int_X g_n \, d\mu = 3.
$$

I.3. Consider the sequence $\{f_n\}_{n\in\mathbb{N}}$ where for each $n \in \mathbb{N}$ the function $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ is given by:

$$
f_n(x) := \begin{cases} |x|, & \text{if } \frac{1}{n} \le |x| \le 1, \\ \frac{n}{2}x^2 + \frac{1}{2n}, & \text{if } |x| \le \frac{1}{n}, \end{cases} \qquad x \in \mathbb{R}.
$$

- (1) Show that for each $\alpha > 0$ the sequence $\left\{ (f_n)^{\alpha} \right\}_{n \in \mathbb{N}}$ converges uniformly on the interval [−1, 1], and find the limit function.
- (2) Show that

$$
\lim_{n \to \infty} \int_{[0,1]} \bigl(f_n(x)\bigr)^{\alpha} dx,
$$

exists and evaluate the limit.

(3) Show that for each $n \in \mathbb{N}$ the function f_n is differentiable on the interval $(-1, 1)$, and that the sequence $\{f'_n\}_{n\in\mathbb{N}}$ converges pointwise but not uniformly on $(-1, 1)$.

I.4. Show that if $f : [0, 1] \longrightarrow \mathbb{R}$ is a Lebesgue measurable function, then given $\varepsilon > 0$, there exists a continuous function $g: [0,1] \longrightarrow \mathbb{R}$ such that $|\{x \in [0,1] : f(x) \neq g(x)\}| < \varepsilon$ (where if $E \subseteq \mathbb{R}$ is a Lebesgue measurable set then $|E|$ denotes its Lebesgue measure).

Part II. (Do 2 problems):

II.1. Let $f : [0, 1] \to \mathbb{R}$ be a bounded, Lebesgue measurable function which satisfies

$$
\int_{[0,1]} f(x)x^k dx = \frac{1}{(k+2)(k+3)} = \frac{1}{k+2} - \frac{1}{k+3}, \quad \text{for each} \quad k \in \mathbb{N} \cup \{0\}.
$$

Show that $f(x) = x - x^2$ almost everywhere (with respect to the Lebesgue measure) on [0, 1].

II.2. Let (X, \mathfrak{M}, μ) be a measure space and consider $f \in L^1(X, \mathfrak{M}, \mu)$. Show that for each $\varepsilon > 0$ there exists $\delta > 0$ such that E $|f| d\mu < \varepsilon$ whenever $E \in \mathfrak{M}$ is such that $\mu(E) < \delta$.

II.3 Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions such that $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ is Lebesgue measurable for each $n \in \mathbb{N}$. Assume that $f \in L^1(\mathbb{R})$ is such that $|f_n(x)| \leq f(x)$ for each $n \in \mathbb{N}$ and for almost every $x \in \mathbb{R}$ (with respect to the Lebesgue measure). Show that if for any bounded interval $I \subseteq \mathbb{R}$ one has $\lim_{n \to \infty} \int_I f_n dx = 0$ then $\lim_{n \to \infty} \int_{\mathbb{R}} f_n dx = 0$.