Real Analysis Ph.D. Qualifying Exam Temple University January 13, 2012

Part I. (Do 3 problems)

- 1. Let x_k be a sequence in a metric space (X, d) such that $\sum_{k=1}^{\infty} d(x_k, x_{k+1}) < \infty$. Prove that x_k is a Cauchy sequence.
- 2. Prove that the function

$$F(x) = \int_0^{+\infty} \frac{\cos(x t^2)}{1 + t^2} dt$$

is continuous for all $x \in \mathbb{R}$.

- 3. Let $f_n(x) = n x e^{-n x^2}$ on $[0, +\infty)$. Prove that
 - (a) f_n converges to zero pointwise in $[0, +\infty)$
 - (b) f_n does not converge uniformly in $[0, +\infty)$
 - (c) f_n converges in measure on $[0, +\infty)$
 - (d) $\int_0^\infty f_n(x) \, dx = \frac{1}{2}.$

HINT for (c): may use that $e^z \ge z^2/2$ for all $z \ge 0$.

4. Let $f \in C^1[0, +\infty)$ such that $f(x) \to 0$ as $x \to +\infty$. Prove that

$$\int_0^\infty f(x)^2 \, dx \le 2 \left(\int_0^\infty x^2 f(x)^2 \, dx \right)^{1/2} \left(\int_0^\infty f'(x)^2 \, dx \right)^{1/2}$$

HINT: write $f(x)^2 = -\int_x^{\infty} (f(t)^2)' dt$.

Part II. (Do 2 problems)

- 1. Let $p \ge 1$, $f_k \in L^p(\mathbb{R}^n)$ with $f_k \to f$ a.e., and $g(x) := \sup_k |f_k(x)| \in L^p(\mathbb{R}^n)$. Prove that $f \in L^p(\mathbb{R}^n)$ and $f_k \to f$ in $L^p(\mathbb{R}^n)$.
- 2. Let f_k be absolutely continuous functions in [a, b] such that $f_k(a) = 0$ for all k. Suppose that f'_k is a Cauchy sequence in $L^1[a, b]$. Prove that there exists f absolutely continuous on [a, b] such that $f_k \rightarrow f$ uniformly in [a, b].
- 3. Let χ_E denote the characteristic function of a bounded set $E \subset \mathbb{R}^n$. Prove that
 - (a) the function $\phi(y) = \int_{\mathbb{R}^n} \chi_E(x) \chi_E(y+x) dx$ is continuous for each $y \in \mathbb{R}^n$.
 - (b) If |E| > 0, then show that (a) implies that 0 is an interior point of the set $E E = \{x y : x, y \in E\}.$