Ph.D. Comprehensive Examination **Real Analysis** August 2022

Part I. Do three of these problems.

I.1. Prove that if E is Lebesgue measurable subset of \mathbb{R}^n with $|E| < \infty$ then for all $\epsilon > 0$ there exists a compact set K such that $K \subset E$ and $|E \setminus K| < \epsilon$.

I.2. For each part, prove that there exists a sequence $f_n : [0,1] \to \mathbb{R}$ of measurable nonnegative functions with the properties

(a) $\int_0^1 f_n(x) dx = 1$ for all $n \in \mathbb{N}$ but $\lim_{n \to \infty} f_n(x) = 0$ for almost all $x \in [0, 1]$; (b) $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$ but $\limsup_{n \to \infty} f_n(x) = 1$ for almost all $x \in [0, 1]$.

Hint: For (b), consider using the characteristic functions of the 'cubes' $\frac{1}{2m}[0,1] + \frac{k}{2m}, m \in \mathbb{N}$, $k=0,\ldots,2^m-1.$

I.3. Let $f: (1,\infty) \to \mathbb{R}$ be defined by

$$f(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Prove that f is differentiable, and find its derivative.

I.4. Let X be a set and let \mathcal{M} be a σ -algebra of subsets of X. Suppose $\mu, \nu \lambda$ are σ -finite measures on (X, \mathcal{M}) with ν absolutely continuous with respect to μ and μ absolutely continuous with respect to λ .

- (a) Prove that ν is absolutely continuous with respect to λ .
- (b) Write the Radon-Nikodym derivative of ν with respect to λ in terms of those of μ with respect to λ and ν with respect to μ .

Part II. Do two of these problems.

II.1. (a) Let $\{f_n\}$ be a sequence of nonnegative measurable functions on (a, b) such that $\sum_{n=1}^{\infty} \int_a^b f_n(x) dx < \infty$. Show that $\sum_{n=1}^{\infty} f_n(x)$ converges for a.e. x in (a, b). (b) Suppose the series $\sum_{k=1}^{\infty} a_k$ converges absolutely. Let $g \in L^1(a, b)$ and let $\{x_k\}_{k=1}^{\infty}$ be a

sequence in (a, b). Show that

$$\sum_{k=1}^{\infty} a_k g(x - x_k)$$

converges absolutely for a.e. x in (a, b).

II.2. Suppose $f \in L^1(0, 1)$.

- (a) Let $0 < \delta < 1$. Prove that $(n+1) \int_0^{1-\delta} x^n f(x) dx \to 0$ as $n \to \infty$. (b) Suppose $\lim_{x\to 1^-} f(x) = a$. Prove that $(n+1) \int_0^1 x^n f(x) dx \to a$ as $n \to \infty$.

II.3. Let $f \in L^1(\mathbb{R})$. Prove that $\int_{\mathbb{R}} \cos(nx) f(x) dx \to 0$ as $n \to \infty$. For this problem you may use without justification integration by parts and the fact that $\{g \in C^1(\mathbb{R}) : g \text{ vanishes outside some bounded interval}\}$ is dense in $L^1(\mathbb{R})$

Justify your answers thoroughly. For any theorem that you wish to cite, you should either give its name or a statement of the theorem.