Real Analysis Ph.D. Qualifying Exam Temple University August 18, 2021

Part I. (Do 3 problems)

- 1. Let x_k be a sequence in a metric space (X, d) such that $\sum_{k=1}^{\infty} d(x_k, x_{k+1}) < \infty$. Prove that x_k is a Cauchy sequence.
- 2. Prove that the function

$$F(x) = \int_0^{+\infty} \frac{\cos(x t^2)}{1 + t^2} dt$$

is well defined and is continuous for all $x \in \mathbb{R}$.

3. Let $E \subset \mathbb{R}^n$. The function $f : E \to \mathbb{R}$ is upper semicontinuous at $x_0 \in E$ if for each $\epsilon > 0$ there exists $\delta > 0$ such that $f(x) \leq f(x_0) + \epsilon$ for all $|x - x_0| < \delta, x \in E$.

Prove that if f is upper semicontinuous in E compact, then f is bounded above in E.

4. Prove Dini's theorem: Let *X* be a compact topological space. If $f_n : X \to \mathbb{R}$ is a sequence of continuous functions such that $f_n(x) \to 0$ for each $x \in X$ and $f_n(x) \ge f_{n+1}(x)$ for all x and n, then $f_n \to 0$ uniformly in *X*.

HINT: for $\epsilon > 0$ consider $F_n = \{x \in X : f_n(x) < \epsilon\}$.

Part II. (Do 2 problems)

1. Let $f \in L^1(E)$. Prove that for each $\epsilon > 0$ there exists $\delta > 0$ such that for any $A, B \subset E$ measurable with $|A \triangle B| < \delta$ we have

$$\left|\int_{A}f(x)\,dx-\int_{B}f(x)\,dx\right|<\epsilon.$$

- 2. Suppose $f_k \to f$ a.e. on \mathbb{R}^n , f_k measurable. Prove that for each $\epsilon > 0$ there exist a sequence of disjoint measurable sets E_j of finite measure such that $|\mathbb{R}^n \setminus \bigcup_{j=1}^{\infty} E_j| < \epsilon$ and $f_k \to f$ uniformly on each E_j .
- 3. Let $0 , <math>f \in L^q(X, \mu)$, and $E \subset X$ with $0 < \mu(E) < \infty$. Prove that

$$\left(\frac{1}{\mu(E)}\int_{E}|f(x)|^{p}\,d\mu(x)\right)^{1/p}\leq \left(\frac{1}{\mu(E)}\int_{E}|f(x)|^{q}\,d\mu(x)\right)^{1/q}.$$