Real Analysis Ph.D. Qualifying Exam Temple University August 23, 2019

Part I. (Do 3 problems)

1. Let $f_n(x) = n x e^{-n x^2}$ on $[0, +\infty)$. Prove that

- (a) f_n converges to zero pointwise in $[0, +\infty)$
- (b) f_n does not converge uniformly in $[0, +\infty)$
- (c) f_n converges in measure on $[0, +\infty)$
- (d) $\int_0^\infty f_n(x)\,dx=\frac{1}{2}.$

HINT for (c): may use that $e^z \ge z^2/2$ for all $z \ge 0$.

2. Let $f \in C^1[0, +\infty)$ such that $f(x) \to 0$ as $x \to +\infty$. Prove that

$$\int_0^\infty f(x)^2 \, dx \le 2 \left(\int_0^\infty x^2 f(x)^2 \, dx \right)^{1/2} \left(\int_0^\infty f'(x)^2 \, dx \right)^{1/2}.$$

HINT: write $f(x)^2 = -\int_x^\infty \left(f(t)^2\right)' dt$.

- 3. Let *E* be a subset of a metric space (*X*, *d*) and let $E_k = \{x \in X : \text{dist}(x, E) < 1/k\}$. Let μ be a Borel measure on (*X*, *d*) such that $\mu(C) < \infty$ for each bounded Borel set *C*.
 - (a) Prove that E_k is open.
 - (b) If *E* is compact, then prove that $\mu(E) = \lim_{k\to\infty} \mu(E_k)$.

4. Let
$$f \in L^1(0, b)$$
 and $g(x) = \int_x^b \frac{f(t)}{t} dt$. Prove that $g \in L^1(0, b)$ and
$$\int_0^b g(x) dx = \int_0^b f(t) dt.$$

Part II. (Do 2 problems)

1. Given $\theta \in \mathbb{R}$, let $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping given by

$$T_{\theta}(x, y) = (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta).$$

Prove that $||f \circ T_{\theta} - f||_p \to 0$, as $\theta \to 0$, for each $f \in L^p(\mathbb{R}^2)$, $1 \le p < \infty$.

HINT: prove it first for f continuous with compact support and then use the density of this class of functions in L^p .

- 2. Let f_k be absolutely continuous functions on [a, b] and $f_k(a) = 0$. Suppose f'_k is a Cauchy sequence in $L^1([a, b])$. Show that there exists f absolutely continuous on [a, b] such that $f_k \to f$ uniformly on [a, b].
- 3. Let $\{E_j\}_{j=1}^{\infty}$ be a sequence of μ -measurable sets in a measure space (X, Σ, μ) such that $\mu(E_j \cap E_i) = 0$ for $j \neq i$. Prove that

$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j).$$