Real Analysis Ph.D. Qualifying Exam Temple University August 23, 2019

Part I. (Do 3 problems)

1. Let $f_n(x) = n x e^{-nx^2}$ on $[0, +\infty)$. Prove that

- (a) f_n converges to zero pointwise in $[0, +\infty)$
- (b) f_n does not converge uniformly in $[0, +\infty)$
- (c) f_n converges in measure on $[0, +\infty)$
- (d) $\int_0^\infty f_n(x) dx = \frac{1}{2}$ $\frac{1}{2}$.

HINT for (c): may use that $e^z \geq z^2/2$ for all $z \geq 0$.

2. Let $f \in C^1[0, +\infty)$ such that $f(x) \to 0$ as $x \to +\infty$. Prove that

$$
\int_0^{\infty} f(x)^2 dx \le 2 \left(\int_0^{\infty} x^2 f(x)^2 dx \right)^{1/2} \left(\int_0^{\infty} f'(x)^2 dx \right)^{1/2}.
$$

HINT: write $f(x)^2 = -\int_x^{\infty} (f(t)^2)' dt$.

- 3. Let *E* be a subset of a metric space (X, d) and let $E_k = \{x \in X : dist(x, E) < 1/k\}$. Let μ be a Borel measure on (X, d) such that $\mu(C) < \infty$ for each bounded Borel set *C*.
	- (a) Prove that E_k is open.
	- (b) If *E* is compact, then prove that $\mu(E) = \lim_{k \to \infty} \mu(E_k)$.

4. Let
$$
f \in L^1(0, b)
$$
 and $g(x) = \int_x^b \frac{f(t)}{t} dt$. Prove that $g \in L^1(0, b)$ and

$$
\int_0^b g(x) dx = \int_0^b f(t) dt.
$$

Part II. (Do 2 problems)

1. Given $\theta \in \mathbb{R}$, let $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping given by

$$
T_{\theta}(x, y) = (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta).
$$

Prove that $||f \circ T_{\theta} - f||_p \to 0$, as $\theta \to 0$, for each $f \in L^p(\mathbb{R}^2)$, $1 \le p < \infty$.

HINT: prove it first for *f* continuous with compact support and then use the density of this class of functions in L^p .

- 2. Let f_k be absolutely continuous functions on [a, b] and $f_k(a) = 0$. Suppose f'_k \mathcal{C}_k is a Cauchy sequence in $L^1([a,b])$. Show that there exists f absolutely continuous on $[a,b]$ such that $f_k \to f$ uniformly on [*a*, *b*].
- 3. Let ${E_j}_{j=0}^{\infty}$ $\sum_{j=1}^{\infty}$ be a sequence of *μ*-measurable sets in a measure space (X, Σ, μ) such that $\mu(E_j \cap E_i) = 0$ for $j \neq i$. Prove that

$$
\mu\left(\bigcup_{j=1}^{\infty}E_j\right)=\sum_{j=1}^{\infty}\mu(E_j).
$$