Real Analysis Ph.D. Qualifying Exam Temple University August, 2015

• Justify your answers thoroughly.

• You are allowed to rely on a previous part of a multi-part problem even if you do not work out the previous part.

• For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Part I (Do 3 problems)

I.1. Let A_k be a sequence of measurable subsets of [0, 1] such that, for every finite set of indices $i_1 < i_2 < \cdots < i_k$,

$$
m(A_{i_1} \cap A_{i_2} \cap \cdots A_{i_k}) = m(A_{i_1})m(A_{i_2})\ldots m(A_{i_k})
$$

where *m* stands for Lebesgue measure.

- (a) Show that the sequence $B_k = [0, 1] \setminus A_k$ has the same property.
- (b) Suppose in addition that the series $\sum m(A_k)$ diverges. Show that

$$
m\left(\cup_{k=1}^{\infty}A_k\right)=1.
$$

I.2. Let $p_t(x) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi t}e^{-\frac{1}{2t}x^2}$, $t>0$, $x \in R$. It is known that \int_R $\frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}e^{-\frac{1}{2}x^2}dx = 1$. Let $f \in L^{\infty}(R)$ and $u(t, x) = f * p_t(x)$.

Show that $\frac{\partial}{\partial t}u(t, x) = \int_R f(y) \frac{\partial}{\partial x}$ $\frac{\partial}{\partial t} p_t(x - y) dy$, *t* > 0, *x* ∈ *R*.

I.3. Let *rⁿ* be the sequence of all rational numbers and

$$
f(x)=\sum_{n:r_n\leq x}\frac{1}{2^n}.
$$

Prove that

- (a) *f* is continuous at irrational numbers *x*.
- (b) *f* is discontinuous at rational numbers *rn*.

(c) Calculate $\int_0^1 f$.

I.4. Consider the expression

$$
\int_0^\infty \frac{\sin x}{x^\alpha} dx.
$$

Does there exist an $\alpha > 0$ such that this exists an improper Riemann integral but does not exist as a Lebesgue integral? Prove your answer.

Part II (Do 2 problems)

II.1. Assume that *f* : [0, 1] \mapsto **R** is an absolutely continuous function with $\int_0^1 f(x) dx = 0$. Prove that for any $y \in [0, 1]$ it holds

$$
\left|\int_0^1 (y-x) f'(x) dx\right| \leq \sup_{0\leq x\leq 1} |f(x)|.
$$

II.2. Let $T_\theta: R^2 \to R^2$ be a mapping given by

$$
T_{\theta}(x, y) = (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta).
$$

Show that $|| f \circ T_{\theta} - f||_p \to 0$, as $\theta \to 0$, for all $f \in L^p(R^2)$, $0 < p < \infty$.

II.3. If $\{f_1, f_2, ...\}$ is a complete orthonormal set in $L^2[0,1]$ and A is an arbitrary subset of positive Lebesgue measure in [0, 1] show that

$$
1 \leq \int_A \sum_{i=1}^{\infty} |f_i(x)|^2 dx.
$$