Real Analysis Ph.D. Qualifying Exam Temple University August 24, 2012

Part I. (Do 3 problems)

1. Let $f \in C^2(a, b)$. Prove that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

for each $x \in (a, b)$.

- 2. Let $f_n(x) = \frac{n x}{x^2 + n^2}$, $x \in \mathbb{R}$. Show that
 - (a) f_n does not converge uniformly in \mathbb{R} ;
 - (b) f_n does not converge in measure in \mathbb{R} .

3. Let
$$f(x, y) = \frac{x - y}{(x + y)^3}$$
. Show that $f \notin L^1([1, \infty) \times [1, \infty))$. Justify your answer.

4. Find

$$\lim_{n\to\infty}\int_0^n \left(1-\frac{x}{n}\right)^n e^{x/2} \, dx.$$

Justify your answer.

Part II. (Do 2 problems)

- 1. Let *f* be absolutely continuous on [*a*, *b*]. Prove that
 - (a) if $E \subset [a, b]$ with |E| = 0, then |f(E)| = 0;
 - (b) if *E* is measurable, then f(E) is measurable.
- 2. Let f_1, \dots, f_k be continuous real valued functions on the interval [a, b]. Show that the set $\{f_1, \dots, f_k\}$ is linearly dependent on [a, b] if and only if the $k \times k$ matrix with entries

$$\langle f_i, f_j \rangle = \int_a^b f_i(x) f_j(x) dx$$

has determinant zero.

3. Let $f_n : E \to \mathbb{R}$ be a sequence of measurable functions and $a \in \mathbb{R}$. Suppose that

$$\sum_{n=1}^{\infty} |\{x \in E : f_n(x) > a\}| < \infty.$$

Prove that $\overline{\lim}_{n\to\infty} f_n(x) \le a$ for a.e. $x \in E$.

HINT: let $E_n = \{x \in E : f_n(x) > a\}$ and $S = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$. Show |S| = 0, and if $\overline{\lim}_{n \to \infty} f_n(x) > a$, then $x \in S$.