Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

January 2023

Part I. Solve three of the following problems.

I.1 Let V be a solid torus with meridian and longitude curves μ_V, λ_V . (Recall that μ_V and λ_V are characterized by the following properties: μ_V bounds a disk in V and λ_V generates $H_1(V)$.) Let W be a solid torus with meridian and longitude curves μ_W, λ_W . Let M be a 3-manifold obtained by gluing V to W via a homeomorphism $\varphi : \partial V \to \partial W$ such that

 $\varphi_*(\mu_V) = 3\mu_W + 4\lambda_W, \qquad \varphi_*(\lambda_V) = 2\mu_W + 3\lambda_W.$

Use the Mayer–Vietoris sequence to compute the homology groups $H_i(M)$.

I.2 Let M be an (n-1)-dimensional, compact submanifold of \mathbb{R}^n not containing 0. Show that for all but a measure zero set of unit vectors $v \in S^{n-1}$, the ray $\{tv : t \ge 0\}$ meets M in (at most) finitely many points.

I.3 Let M be a smooth manifold. Use a partition of unity argument to show that there is a smooth positive function $f: M \to \mathbb{R}$ such that $f^{-1}([0, c])$ is compact for every $c \ge 0$.

I.4 Let G be a Θ -graph (see figure).

a) Explicitly compute a regular degree 3 cover of G and its induced subgroup of $\pi_1(G)$.

b) Explicitly compute an irregular degree 3 cover of G and its induced subgroup of $\pi_1(G)$.

You should provide justifications for why the first cover is regular and the second irregular.

Figure 1: A Θ -graph

Part II. Solve two of the following problems.

II.1 Let M and N be surfaces of genus 2. Let X be a 2–complex constructed by identifying a separating curve on M with a non-separating curve on N (see Figure.)

a) Compute a presentation for $\pi_1(X)$ with finitely many generators and relations.

b) Is there a retraction $X \to N$?

Figure 2: The surfaces M with a separating curve (top) and N with a non-separating curve (bottom).

II.2 Consider the torus $T = S^1 \times S^1 \subset \mathbb{R}^2 \times \mathbb{R}^2$ given by

$$T = \{(w, x, y, z) \in \mathbb{R}^2 \times \mathbb{R}^2 : w^2 + x^2 = 1 = y^2 + z^2\},\$$

oriented by the standard orientation on S^1 and the product orientation. Let $\iota: T \to \mathbb{R}^4$ be the inclusion map and consider the following 2-form on \mathbb{R}^4 :

$$\eta = wxyz \, dy \wedge dw.$$

a) Is the pullback $\iota^*\eta \in \Omega^2(T)$ closed?

b) Is the pullback $\iota^*\eta \in \Omega^2(T)$ exact? (Hint: computing $\int_T \iota^*\eta$ is useful.)

II.3 Suppose that M, N are compact, connected smooth manifolds without boundary, of the same dimension. Suppose that $f: M \to N$ has no critical points. Show that $f_*: \pi_1(M) \to \pi_1(N)$ is injective. Give a counter-example without the compactness assumption.