Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

January 2021

Part I. Solve three of the following problems.

I.1 Let X be the space defined by identifying two pairs of sides of a pentagon as indicated:

Compute $\pi_1(X)$, then equip X with a Δ -complex structure and use it to compute the homology groups $H_i(X)$ for all $i \geq 0$. (Note, you must use a Δ -complex structure to compute the homology groups.)

I.2 Let (X, x) be a connected CW complex with base point and let $p: (\widetilde{X}, \widetilde{x}) \to (X, x)$ be its universal cover with $\widetilde{x} \in p^{-1}(x)$. Identify $\pi_1(X, x)$ with the deck group of p.

Let $f: (X, x) \to (X, x)$ be a continuous map. Show that

- 1. f has a unique lift to $\widetilde{f}: (\widetilde{X}, \widetilde{x}) \to (\widetilde{X}, \widetilde{x})$.
- 2. For any $\gamma \in \pi_1(X, x)$ and $z \in \widetilde{X}$,

$$\widetilde{f}(\gamma \cdot z) = f_*(\gamma) \cdot \widetilde{f}(z),$$

where $f_*: \pi_1(X, x) \to \pi_1(X, x)$ is the induced map and $\gamma \cdot z$ is the image of $z \in \widetilde{X}$ under the deck transformation corresponding to $\gamma \in \pi_1(X, x)$.

I.3 Show that

$$\{(x, y, z) \in \mathbb{R}^3 : x^3 + y^3 + z^3 - 3xyz = 1\}$$

is a surface in \mathbb{R}^3 . Identify its tangent space at (1, 0, 0).

I.4 Suppose that M is a smooth compact manifold without boundary that admits a smooth, nowhere vanishing vectorfield. Show that there is a diffeomorphism $F: M \to M$ that has no fixed points.

Part II. Solve two of the following problems.

II.1 Let M be a smooth submanifold of \mathbb{R}^n of codimension greater than 2. Show that $\mathbb{R}^n - M$ is connected and simply connected.

II.2 Let M and N be smooth, oriented, compact manifolds of dimension n (without boundary) and suppose that $f: M \to N$ is smooth.

- 1. Show that if there is an *n*-form ω on N such that $\int_M f^* \omega \neq 0$, then f is surjective.
- 2. Show that if there is an *n*-form ω on N such that $\int_M f^*\omega = \int_N \omega \neq 0$, then $f: \pi_1(M) \to \pi_1(N)$ is surjective.

II.3 Let X be a connected topological space with compact universal cover. Prove that for each $n \ge 1$, every continuous map from X to the *n*-torus $T^n = (S^1)^n$ is homotopic to a constant map.