Comprehensive Exam in Geometry & Topology

Temple University

January 2020

Part I: Do three of the following problems.

1. Prove that the equations

$$x^{2} - y^{2} - z^{2} + w^{2} - 3z = 0$$
$$2xy - 2zw - 3w = 0$$

define a submanifold of \mathbb{R}^4 . Find its dimension and compute the tangent space at (0, 0, 0, 0).

2. Suppose that M, N are compact, connected, smooth, manifolds without boundary, and that they have equal dimension. Let $f: M \to N$ be an immersion. Show that f is a finite-sheeted covering map.

3. Let X be a cell complex such that $H_1(X) = \mathbb{Z}/3$. Let T^3 be the 3-torus. Prove that every continuous map $f: X \to T$ is homotopic to a constant map.

4. State and prove the Brouwer fixed point theorem in n dimensions. You may assume standard results about algebraic or smooth invariants of standard spaces.

Part II: Do two of the following problems.

1. Let $X = S^1 \vee S^1$ be the figure-8 graph with loops labeled a, b. Let $f: X \to X$ be a map such that $f_*(a) = ba$ and $f_*(b) = bab$. Let Y be the mapping torus of f:

$$Y = X \times [0, 1] / \sim$$
, where $(x, 0) \sim (f(x), 1)$

Construct a cell complex structure on Y, and use it to give a presentation of $\pi_1(Y)$.

2. Let M be a compact, boundaryless, simply connected 4-manifold such that $\chi(M) = 4$ and $H_2(M)$ is torsion-free. Let $K \subset M$ be a knot (that is, a smoothly embedded copy of S^1).

(a) Use Poincaré duality to compute $H_i(M)$ for every *i*.

(b) Let $N = M \setminus K$. Use the Mayer–Vietoris sequence to compute $H_i(N)$ for every *i*.

3. The following questions are about $M = \mathbb{R}^3 \setminus \{0\}$.

(a) Prove that there exists a form $\alpha \in \Omega^2(M)$ which is closed but not exact.

(b) Let S be an embedded 2-sphere in M, not necessarily centered at the origin of \mathbb{R}^3 . Recall that S divides \mathbb{R}^3 into an inside and an outside. Show that $\int_S \alpha = 0$ if and only if the origin is on the outside. Here, α is the same 2-form as in part (a).