Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

January 2019

Part I. Do three of these problems.

I.1 State and prove the Brouwer fixed point theorem in *n* dimensions. You may assume standard facts about homology groups of standard spaces.

I.2 Let M be a compact orientable 4-manifold without boundary. Let α be a smooth 1-form on M and let β be a smooth 2-form on M. Prove that

$$\int_M \alpha \wedge d\beta = \int_M d\alpha \wedge \beta$$

I.3 Let $S \subset \mathbb{R}^3$ be a sphere of radius 2. Define a function $f: S \to \mathbb{R}$ via

$$f(x, y, z) = x^3 + y^3 + z^3 + 1.$$

Let $N = f^{-1}(0)$. Prove that N is a smooth submanifold of S. Then, give an explicit description of the tangent space T_pN at a point $p = (x, y, z) \in N$.

I.4 Let M be a compact orientable n-manifold without boundary.

- a) Use a partition of unity to construct an everywhere–positive n–form ω on M.
- **b**) Is ω closed?
- c) Is ω exact?

Part II. Do two of these problems.

II.1 Let M be the topological space obtained from a unit cube by identifying every pair of opposite faces via a 90° clockwise twist. Let X be the 2–skeleton of M.

- **a**) Give a presentation for $\pi_1(M)$.
- **b**) Compute the homology groups $H_i(X)$.
- c) Compute the homology groups $H_i(M)$. *Hint:* these can be obtained from the homology groups of X via the Mayer–Vietoris sequence.

II.2 Let $f: M \to N$ be a smooth submersion. Let W be a nowhere vanishing vector field on N. Construct a nowhere vanishing vector field V on M, such that $f_*V = W$.

II.3 Let $A = S^1 \times S^1$ be a torus. Let B be a Möbius band. Let X be the topological space obtained by identifying ∂B to the circle $S^1 \times \{*\} \subset A$.

- a) Let $\varphi : \pi_1(X) \to \mathbb{Z}/2$ be the homomorphism that sends every loop in X to 0 and the generator of $\pi_1(B)$ to 1. Describe the cover $\hat{X} \to X$ corresponding to ker(φ). *Hint:* The space \hat{X} embeds in \mathbb{R}^3 . A complete answer to this question should include a fairly accurate picture.
- **b)** Let $f: \hat{X} \to \hat{X}$ be the non-trivial deck transformation of the cover. Describe the action of f.
- c) Describe the universal cover \tilde{X} .