Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

January 2018

Part I. Solve three of the following problems.

I.1 Let X be the space obtained from identifying sides of the polygon \mathcal{P} in Figure 1 as indicated. Compute $\pi_1(X)$ and the homology groups $H_*(X;\mathbb{Z})$.

Figure 1: Identifying sides of a polygon \mathcal{P} .

I.2 Consider the function

$$f(x, y, z) = xy + yz + zx + x + y + z$$

from \mathbb{R}^3 to \mathbb{R} . Classify all the $t \in \mathbb{R}$ such that $M_t = f^{-1}(t)$ is a smooth 2-dimensional submanifold of \mathbb{R}^3 .

I.3 Let K be a Klein bottle and X be the wedge product $\mathbb{RP}^2 \vee \mathbb{RP}^2$ of two real projective planes. If $f : X \to K$ is a continuous mapping, prove that f is homotopic to a constant map.

I.4 Suppose that X and Y are smooth manifolds and that $f: X \to Y$ is a smooth map with differential $(Df_x): T_x X \to T_{f(x)} Y$.

(a) Let V be a smooth vector field on Y, with $V_y \in T_y Y$ the vector in V at y. Say that V is *tangent* to f if

$$V_{f(x)} \in Df(T_xX) \subseteq T_{f(x)}Y$$

for all x in X. If f is an immersion and V is tangent to f, prove that $(Df)_x^{-1}(V_{f(x)})$ determines a well-defined smooth vector field $f^*(V)$ on X. If V is nowhere-vanishing, prove that $f^*(V)$ is also nowhere-vanishing.

(b) Give an example of X, Y, f, and a nowhere-vanishing V satisfying all the assumptions of part (a).

Part II. Solve two of the following problems.

II.1 Let R_0 denote the graph with two vertices and one edge between them; see Figure 2. For $n \ge 1$, the rose with n petals R_n is the unique finite graph with 1 vertex and n edges; see Figure 3.

Figure 2: The graph R_0 .

Figure 3: The graph R_4 .

- (a) Prove that any finite connected graph \mathcal{G} is homotopy equivalent to R_n for some $n \geq 0$.
- (b) Let \mathcal{G} be a finite connected graph, V denote the number of vertices of \mathcal{G} , and E the number of edges. Give a formula for the n in part (a) in terms of V and E.
- (c) Let \mathcal{G} be as above and $\mathcal{H} \to \mathcal{G}$ be a connected covering of degree d. Show that $\pi_1(\mathcal{H})$ is a free group of rank $m \geq 0$, where m is an explicit function of: d, the number V of vertices of \mathcal{G} , and the number E of edges of \mathcal{G} .

II.2 Let M be a smooth compact oriented manifold of dimension n without boundary and $\Omega^{q}(M)$ be the space of smooth exterior forms of degree q on M. Prove that the assignment

$$I(\omega) := \int_M \omega$$

induces an \mathbb{R} -linear map

$$I: \Omega^n(M) / d(\Omega^{n-1}(M)) \longrightarrow \mathbb{R},$$

where d is the exterior derivative. Use a partition of unity to prove that the map I is onto.

II.3 Let $X = S^1$ with coordinate

$$\theta \mapsto z = \cos \theta + i \sin \theta \in \mathbb{C}$$

and $Y = X \times X$.

- (a) Show that the map $f_n(z) = (z, z^n)$ defines a smooth immersion of X into Y for all $n \in \mathbb{Z}$.
- (b) Give an example of a smooth map $h: Y \to X$ such that $h \circ f_1$ is a submersion at every $z \in X$.
- (c) Give an example of a smooth map $h: Y \to X$ such that $h \circ f_1$ fails to be a submersion for every $z \in X$.