Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

August 2023

Part I. Solve three of the following problems.

I.1 Let M be a compact, oriented n-manifold without boundary. Let ω be a smooth (n-1) form on M. Show that there is some $p \in M$ such that $(d\omega)_p = 0$.

I.2 Let S be the unit 2-sphere in \mathbb{R}^3 , centered at the origin. For $t \in \mathbb{R}$, let P_t be the surface defined by the equation $y^2 + z = t$.

Determine the values of $t \in \mathbb{R}$ for which P_t is transverse to S, and identify the dimension of $P_t \cap S$ at these values.

I.3 Prove that the *n*-sphere S^n admits a nonvanishing vector field if and only if *n* is odd.

I.4 Let X be the space formed by quotienting the disk D^2 by the following relation

 $z \sim w \iff z = w \text{ or } w = e^{2\pi/7} z \text{ for } w, z \in \partial D^2.$

- a) Compute $\pi_1(X)$ and describe a cell structure on \widetilde{X} .
- b) Does X have a connected double cover? Why or why not?
- c) Let $f: X \to Y$ be a continuous map where Y is the torus. Show that f is homotopic to a constant map.

Part II. Solve two of the following problems.

II.1 Let S be a closed, orientable surface of genus 2. Consider the space X obtained by attaching a cylinder to S by mapping one of its boundary components by homeomorphism to an essential, separating curve of S and its other boundary component by homeomorphism to a nonseparating curve of S (see Figure 1). Compute $H_k(X)$ for all $k \ge 0$.

Figure 1: Curves attached to the annulus

- **II.2** Let M be a smooth n-manifold and $f: M \to \mathbb{R}^N$ be a smooth embedding.
- a) Prove that f induces a smooth embedding $F: TM \to T\mathbb{R}^N$.
- b) Let $UM \subset TM$ be the subset consisting of vectors v such that $f_*(v)$ has unit length. Prove that UM is an embedded submanifold of dimension 2n - 1.

II.3 Let $T = S^1 \times S^1$ be a torus. What the minimum number of cells that need to be attached to T to make it contractible? Prove your answer.