Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

August 2021

Part I. Solve three of the following problems.

- **I.1** Let M, N be smooth manifolds and let $f: M \to N$ be a smooth map.
 - a) Define what it means for a subset $Y \subset N$ to have measure zero.
 - b) Formulate the Morse–Sard theorem for f (also known as Sard's Theorem). You do not have to prove it.
 - c) Prove that if $\dim(M) < \dim(N)$, then the image f(M) has measure zero in N. You may use standard facts about Lebesgue measure in \mathbb{R}^n , but you may *not* use the Morse–Sard theorem itself.

I.2 Let $n \in \mathbb{Z}_{\geq 2}$ and \vec{u} be a non-zero vector in \mathbb{R}^n . Denote by $X_{\vec{u}}$ be the following subset of $\operatorname{GL}_n(\mathbb{R})$:

$$X_{\vec{u}} := \{ A \in \operatorname{GL}_n(\mathbb{R}) \mid A\vec{u} = \vec{u} \}.$$

Prove that $X_{\vec{u}}$ is a submanifold of $\operatorname{GL}_n(\mathbb{R})$ diffeomorphic to $\operatorname{GL}_{n-1}(\mathbb{R}) \times \mathbb{R}^{n-1}$.

I.3 Let M be a compact connected n-manifold without boundary, where n is odd. Show that the Euler characteristic of M is zero. *Hint:* Use Poincaré duality.

I.4 The following are two parts of the same problem.

- a) Show that the fundamental group of a finite, connected graph is a free group of finite rank.
- b) Let G be a finite group with d elements, and let $\phi: F_n \to G$ be a surjective map from a free group of rank n. Show that ker (ϕ) is a free group and compute its rank. *Hint:* Use part (a).

Part II. Solve two of the following problems.

II.1 Let M be a smooth manifold of dimension k without boundary and $f: M \to \mathbb{R}^n$ be a smooth immersion. Recall that the Grassmanian $G_k(\mathbb{R}^n)$ is the space of k-dimensional subspaces of \mathbb{R}^n . We assume that k < n.

a) Prove that the formula

 $g(p) := df_p(T_pM), \qquad p \in M$

defines a smooth map $g: M \to G_k(\mathbb{R}^n)$ to the Grassmanian.

b) Let $f: S^{n-1} \to \mathbb{R}^n$ be the standard inclusion map of the unit sphere S^{n-1} into \mathbb{R}^n . Show that the corresponding map $g: S^{n-1} \to G_{n-1}(\mathbb{R}^n)$ is onto but it is not 1-1.

II.2 Let X be the space obtained from two *n*-spheres by identifying them along their equatorial (n-1)-sphere. Using any method, compute the homology groups $H_i(X)$ for all *i*. The homology groups of an *n*-sphere can be used without proof.

II.3 Let V be a continuous vector field on the unit ball $B^n \subset \mathbb{R}^n$ which is nowhere zero. Prove that there are points $x, y \in \partial B^n \cong S^{n-1}$ and positive numbers a, b such that V(x) = ax and V(y) = -by.