Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

August 2018

Part I. Solve three of the following problems.

I.1 Prove that a closed surface admits a connected normal cover of every degree $d \ge 1$ if and only if it has nonpositive Euler characteristic.

I.2 Let M be a smooth manifold of dimension n and let $E \to M$ be a vector bundle over M. Prove that the zero section $s : M \to E$, defined locally as $x \mapsto (x, 0)$, is a smooth immersion.

I.3 Let M be a smooth manifold and $f: M \to \mathbb{R}$ a continuous function that is everywhere positive. Use partitions of unity to prove that there is a smooth function $g: M \to \mathbb{R}$ such that 0 < g(x) < f(x) for every x.

I.4 Construct a cell complex X whose integral homology groups are as follows:

$$H_i(X) = \begin{cases} \mathbb{Z}^2 & i = 0\\ \mathbb{Z} \oplus \mathbb{Z}/3 & i = 1\\ 0 & i = 2\\ \mathbb{Z} & i = 3\\ 0 & i > 3 \end{cases}$$

Part II. Solve two of the following problems.

II.1 For i = 1, 2, let $T_i = \mathbb{R}^2/\mathbb{Z}^2$ be a 2-torus and $\{a_i, b_i\}$ the standard generators for $\pi_1(T_i)$. Consider the identification space

$$Y = T_1 \sqcup T_2 / \sim$$

where ~ identifies b_1 with $a_2^3 b_2^5$ (considered as embedded loops on T_1 and T_2).

- (a) Compute $\pi_1(Y)$.
- (b) Compute $H_*(Y)$.
- (c) Prove that Y is not homotopy equivalent to a closed oriented surface of genus g for any $g \ge 0$.

II.2 Fix $n \ge 1$.

- (a) Prove that the group $SL_n(\mathbb{C})$ of $n \times n$ complex matrices of determinant one is a manifold of (real) dimension $2n^2 2$.
- (b) Let Id_n be the $n \times n$ identity matrix, and let M^* denote the complex conjugate transpose of a matrix $M \in \mathrm{SL}_n(\mathbb{C})$. Prove that the special unitary group

$$\operatorname{SU}(n) = \{ M \in \operatorname{SL}_n(\mathbb{C}) : M^*M = \operatorname{Id}_n \}$$

is a submanifold of $SL_n(\mathbb{C})$ and calculate its dimension.

II.3 Let $\gamma \to \mathbb{R}^2$ be the oriented closed curve shown below. The points of self-intersection are (0,0), (2,1), and (4,2). Compute $\int_{\gamma} y \, dx$.

