Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

August 2017

Part I. Solve three of the following problems.

I.1 Prove that the equations

$$x_1^2 - x_2^2 - x_3^2 + x_4^2 - x_3 = 0$$

$$2x_1x_2 - 2x_3x_4 - x_4 = 0$$

define a submanifold of \mathbb{R}^4 and find its dimension.

I.2 Consider S^n with the standard atlas $\{U_N, U_S\}$ coming from the stereographic projections from the north and south poles $(0, \ldots, 0, \pm 1)$. Let x^1, \ldots, x^n be coordinates on U_N and y^1, \ldots, y^n be coordinates on U_S . Prove that the formulas

$$v\Big|_{U_N} = \sum_{i=1}^n x^i \partial_{x^i}$$
$$v\Big|_{U_S} = -\sum_{i=1}^n y^i \partial_{y^i}$$

define a smooth vector field on S^n .

I.3 Let Σ_g denote a closed orientable surface of genus $g \ge 0$. Prove using homology groups that the wedge product $\Sigma_{g_1} \lor \Sigma_{g_2}$ is never homotopy equivalent to the connect sum $\Sigma_{g_1} \# \Sigma_{g_2}$.

I.4 Prove that a closed orientable genus g surface admits an irregular (i.e., not normal) cover if and only if $g \ge 2$.

Part II. Solve two of the following problems.

II.1 Let I_n (resp. 0_n) be the identity matrix (resp. the zero matrix) of size $n \times n$ and

$$J := \begin{pmatrix} 0_n & I_n \\ -I_n & 0_n \end{pmatrix}.$$

a) Prove that the subset

$$\operatorname{Sp}(2n) := \left\{ A \in \operatorname{M}_{2n}(\mathbb{R}) : A^t J A = J \right\} \subset \operatorname{M}_{2n}(\mathbb{R})$$

is a submanifold of $M_{2n}(\mathbb{R}) = \mathbb{R}^{(4n^2)}$.

b) Prove that the assignment $X \mapsto X^t$ defines a diffeomorphism from Sp(2n) onto itself.

II.2 Let v be a smooth vector field on a manifold M and x^1, \ldots, x^n be coordinates in a neighborhood of a zero $p_0 \in M$ of v.

- **a)** When do we say that the zero p_0 of v is non-degenerate?
- **b)** Consider v as the smooth map $M \to TM$ and compute the matrix of the differential of this map at p_0 with respect to x^1, \ldots, x^n and the corresponding local coordinates near $(p_0, \vec{0}) \in TM$.
- c) Prove that if the map $v: M \to TM$ intersects the zero section of TM transversely, then all zeros of v are non-degenerate.

II.3

- a) Define the topological space \mathbb{RP}^n and describe your favorite CW structure on this space.
- b) Let X be the space obtained by gluing two copies of \mathbb{RP}^2 to one another along a loop that represents a generator for $\pi_1(\mathbb{RP}^2)$. Describe the universal cover of the space X.
- c) Describe all finite connected coverings of the space X in b) up to equivalence.