Comprehensive Examination in Geometry & Topology Department of Mathematics, Temple University

August 2016

Part I. Solve three of the following problems.

I.1 Prove that any continuous map from the real projective plane \mathbb{RP}^2 to the *n*-dimensional torus $T^n = (S^1)^n$ is nullhomotopic $(n \ge 1)$.

I.2 Let *n* be an integer ≥ 2 and $SL_n(\mathbb{R})$ be the following subset in the set $Mat_{n \times n}(\mathbb{R})$ of $n \times n$ matrices with real entries:

 $\operatorname{SL}_n(\mathbb{R}) := \{ A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) \mid \det(A) = 1 \}.$

- (a) Prove that $SL_n(\mathbb{R})$ is a submanifold of $Mat_{n \times n}(\mathbb{R}) = \mathbb{R}^{n^2}$ of dimension $n^2 1$.
- (b) Prove that the assignment $A \mapsto A^{-1}$ defines a diffeomorphism from $SL_n(\mathbb{R})$ onto itself.

I.3 Let X_n be the rose with *n* petals, i.e., a graph with one vertex and *n* edges.

- 1. Compute $\pi_1(X_n)$ (e.g., with base point the vertex).
- 2. Draw all the equivalence classes of 2-sheeted covers of X_2 relative to your base point (*hint: there are 3 of them*).

I.4 Let $\operatorname{Conf}_2(\mathbb{R}^2)$ be the configuration space of pairs of points in \mathbb{R}^2 :

$$\operatorname{Conf}_{2}(\mathbb{R}^{2}) := \left\{ (\mathbf{x}_{1}, \mathbf{x}_{2}) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid \mathbf{x}_{1} \neq \mathbf{x}_{2} \right\}$$

with the obvious manifold structure inherited from $\mathbb{R}^2 \times \mathbb{R}^2 = \mathbb{R}^4$. Consider the map $f: \operatorname{Conf}_2(\mathbb{R}^2) \to S^1$ defined by the formula

$$f(\mathbf{x}_1, \mathbf{x}_2) := \frac{\mathbf{x}_1 - \mathbf{x}_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

and let ω be a 1-form on S^1 satisfying

$$\int_{S^1} \omega \neq 0.$$

Prove that the pull back $f^*(\omega)$ is a closed 1-form on $\operatorname{Conf}_2(\mathbb{R}^2)$ that is not exact.

Part II. Solve two of the following problems.

II.1 A knot K in the 3-sphere S^3 is the image a smooth embedding $f : S^1 \to S^3$. Set $M = S^3 \setminus N(K)$, where N(K) is a small tubular neighborhood of K in S^3 .

- (a) Calculate the integer homology groups $H_*(M; \mathbb{Z})$ using the Mayer–Vietoris sequence. You may assume you know the homology groups of tori and spheres.
- (b) Conclude from (a) that $\pi_1(M)$ is infinite.

II.2 Let A and B be two distinct two dimensional tori and f be a degree d map

$$f: S^1 \times \{x_0\} \subset A \to S^1 \times \{y_0\} \subset B.$$

Compute the fundamental group of the space

$$X := B \sqcup_f A$$

obtained by attaching A to B along $S^1 \times \{x_0\} \subset A$ via f.

II.3 Is there a smooth vector field on the 2-sphere S^2 that vanishes at exactly one point? Either give an example, or prove that no such vector field exists.