Comprehensive Examination in Algebra Department of Mathematics, Temple University

January 2020

Part I. Do three of these problems.

I.1 Let G be a finite non-Abelian group that is generated by two distinct elements of order 2. Show that G is isomorphic to the dihedral group $D_n := \langle r, s \mid s^2 = 1 = r^n, sr = r^{-1}s \rangle$ of order 2n for some $n \in \mathbb{Z}_{\geq 3}$.

I.2 Let A and B be rings (with identity) and let $R = A \times B$ be their direct product. Prove: (a) If I, J are (two-sided) ideals of A and B, respectively, then $I \times J$ is an ideal of R and $R/(I \times J) \cong (A/I) \times (B/J)$.

(b) Every ideal of R is of the form $I \times J$ for suitable ideals $I \subseteq A$ and $J \subseteq B$.

I.3 Let $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the \mathbb{R} -vector space of all functions $\mathbb{R} \to \mathbb{R}$, with the usual addition and multiplication by scalars. For any subset $I \subseteq \mathbb{R}$, let $f_I \in V$ denote the characteristic function of I, defined by $f_I(x) = 1$ if $x \in I$ and $f_I(x) = 0$ otherwise.

(a) Let I_{λ} ($\lambda \in \Lambda$) be any family of subsets of \mathbb{R} such that $I_{\lambda} \nsubseteq \bigcup_{\mu \neq \lambda} I_{\mu}$ for all λ . Prove that the functions $f_{I_{\lambda}}$ ($\lambda \in \Lambda$) are linearly independent. Conclude that dim_{\mathbb{R}} $V = \infty$.

(b) Do the characteristic functions f_I ($I \subseteq \mathbb{R}$) generate the vector space V?

I.4 Let F be a field and let $R = F + x^2 F[x]$, the set of all polynomials in the polynomial ring F[x] such that the coefficient of x is 0.

- (a) Show that R is a subring of F[x].
- (b) Determine the group R^{\times} of invertible elements of R.
- (c) Show that R is not a UFD.

Hint for (c): prove that x^2 and x^3 are irreducible elements of R.

Part II. Do two of these problems.

II.1 (a) Let F_n be the free group on n generators and let $[\mathsf{F}_n, \mathsf{F}_n]$ be the subgroup of F_n generated by group commutators of all elements of F_n . Show that $\mathsf{F}_n/[\mathsf{F}_n, \mathsf{F}_n] \cong \mathbb{Z}^n$.

(b) Prove that if F_n is isomorphic to F_m , then n = m.

II.2 Let R be a ring (with identity) and let $S = \operatorname{Mat}_n(R)$ be the $n \times n$ matrix ring. View R as a subring of S by identifying $r \in R$ with the "scalar" matrix $\sum_{i=1}^{n} re_{i,i} \in S$, where $e_{i,j} \in S$ denotes the matrix having 1 in position (i, j) and 0s elsewhere. Let M be a left S-module and put $M_i = e_{i,i}M$. Show:

(a) Each M_i is an *R*-submodule of *M* and $M = M_1 \oplus \cdots \oplus M_n$ (as *R*-modules).

(b) $M_i = e_{i,j}M$ for any j and $M_i \cong M_1$ as R-modules.

(c) M is irreducible as S-module if and only if M_1 is irreducible as R-module. (Recall that a module is called *irreducible* if it is nonzero and the only submodules are 0 and itself.)

II.3 Let F be a number field, that is, a finite extension of \mathbb{Q} . Show that there are only finitely many roots of unity in F.