Comprehensive Examination in Algebra Department of Mathematics, Temple University

January 2017

Part I. Do three of these problems.

I.1 Let G be a group. Assume that G is generated by two subgroups, N and A, such that A is abelian and N is finite and normal in G. Show that the center $Z(G)$ has finite index in G.

I.2 Let R be a unique factorization domain and let P be a nonzero prime ideal of R. Show that the following are equivalent:

- (i) there is no prime ideal Q with $0 \subsetneq Q \subsetneq P$;
- (ii) P is principal, that is, $P = Rx$ for some $x \in R$.

I.3 Let $V = \mathbb{R}^n$, where *n* is a positive integer, and let $v \in V$ be such that $v \cdot v = 2$, where \cdot is the ordinary dot product.

(a) Show that, defining $s(x) = x - (x \cdot v)v$ for $x \in V$, one obtains a linear transformation $s = s_v \in \text{End}_{\mathbb{R}}(V)$ satisfying $s^2 = \text{Id}_V$ and $\text{rank}(s - \text{Id}_V) = 1$.

(b) Assume that $t \in \text{End}_{\mathbb{R}}(V)$ satisfies $t(v) = -v$, t induces the identity on $V/\mathbb{R}v$, and the composite $f = s \circ t$ satisfies $f^m = \text{Id}_V$ for some positive integer m. Show that $t = s$.

I.4 Let R be a commutative ring. Recall that an element $r \in R$ is said to be *nilpotent* if $r^n = 0$ for some integer $n \geq 0$. Prove that:

(a) The set $N = \{$ all nilpotent elements of R $\}$ is an ideal of R that is contained in every prime ideal of R.

(b) A polynomial $f = r_0 + r_1x + \cdots + r_dx^d \in R[x]$ is nilpotent if and only if all coefficients $r_i \in R$ are nilpotent.

Part II. Do two of these problems.

II.1 Let F_n be the group freely generated by symbols a_1, \ldots, a_n and let B_n be the group with the presentation

$$
B_n = \langle \sigma_1, \dots, \sigma_{n-1} | \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \ \forall \ i \rangle
$$

Prove that the formulas

$$
\Psi(\sigma_i)(a_j) = \begin{cases} a_i a_{i+1} a_i^{-1} & \text{if } j = i \\ a_i & \text{if } j = i+1 \\ a_j & \text{otherwise} \end{cases}
$$

define a group homomorphism $\Psi : B_n \to \text{Aut}(F_n)$, where $\text{Aut}(F_n)$ denotes the automorphism group of F_n . Prove that, for every $1 \le i \le n-1$, the automorphism $\Psi(\sigma_i)$ has an infinite order.

II.2 Let $f(x) \in F[x]$ be a (non-constant) polynomial, where F is any field. Define the discriminant δ of $f(x)$ and prove that $\delta \in F$.

II.3 (a) Let $p(x)$ be a cubic irreducible polynomial in $\mathbb{Q}[x]$, δ be its discriminant and G be its Galois group. Prove that G is isomorphic to A_3 if and only if $\delta = q^2$ for some $q \in \mathbb{Q}$. Prove that, otherwise, $G \cong S_3$.

(b) Let $p(x) \in \mathbb{Q}[x]$ be an irreducible polynomial with at least one real root and at least one complex root with a non-zero imaginary part. Prove that the Galois group of $p(x)$ is non-Abelian.