Comprehensive Examination in Algebra Department of Mathematics, Temple University

January 2013

Part I. Do three of these problems.

- **I.1** Let G be a group of order p^n (p is prime). Prove that G has a normal subgroup of order p^m for all $0 \le m \le n$.
- **I.2** Recall that a commutative ring R with identity $(1 \neq 0)$ is called local if it has exactly one maximal ideal.
- (a) Prove that a commutative ring R with identity is *local* if and only if all non-units of R form an ideal of R; this is exactly the unique maximal ideal of R.
- (b) Prove that $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to a direct product of local rings for every $0 \neq n \in \mathbb{Z}$.
- **I.3** Let F be a field of characteristic 0 and let $V = \bigoplus_{i=0}^n Fx^i$ be the F-vector space of all polynomials of degree at most n. Let D be the endomorphism of V that is given by formal differentiation, $\frac{d}{dx}$.
- (a) Find the Jordan canonical form of D.
- (b) Determine all *D*-invariant subspaces of *V*.
- **I.4** Let F be a field and n a positive integer. Consider the polynomial ring $F[x_1, \ldots, x_n]$ and the ring R of all functions $F^n \to F$, with pointwise addition and multiplication of functions. Show that the evaluation map

$$\phi \colon F[x_1, \dots, x_n] \to R$$
, $\phi(f)(\lambda_1, \dots, \lambda_n) = f(\lambda_1, \dots, \lambda_n)$

is injective if and only if F is infinite.

Part II. Do two of these problems.

II.1 Let \mathbb{F}_p be the finite field with p elements. A maximal flag in the \mathbb{F}_p -vector space $V = \mathbb{F}_p^n$ is a sequence of subspaces,

$$V = V_n \supset V_{n-1} \supset \cdots \supset V_2 \supset V_1 \supset V_0 = \{\mathbf{0}\},\,$$

where dim $V_k = k$. Let U be the subgroup of $\mathrm{GL}_n(\mathbb{F}_p)$ which consist of elements g satisfying

- $q(V_k) = V_k$, and
- g induces the identity map on V_k/V_{k-1}

for all $n \ge k \ge 1$. Prove:

- (a) U is a Sylow p-subgroup for every maximal flag.
- (b) Every Sylow *p*-subgroup of $GL_n(\mathbb{F}_p)$ is of this form.
- (c) The number of Sylow *p*-subgroups of $GL_n(\mathbb{F}_p)$ is given by

$$n_p(\operatorname{GL}_n(\mathbb{F}_p)) = (1+p)(1+p+p^2)\dots(1+p+p^2+\dots+p^{n-1}).$$

- **II.2** Let V be a finite-dimensional vector space over the algebraically closed field F. Recall that an endomorphism $\phi \in \operatorname{End}_F(V)$ is called *diagonalizable* if V has a basis consisting of eigenvectors for ϕ . Prove:
- (a) ϕ is diagonalizable if and only if the minimal polynomial $m_{\phi}(t) \in F[t]$ is separable.
- (b) If $W \subseteq V$ is a subspace such that $\phi(W) \subseteq W$, then the restriction $\phi|_W \in \operatorname{End}_F(W)$ is diagonalizable.
- **II.3** Let $\zeta = e^{2\pi i/7} \in \mathbb{C}$. Determine the degree of the following elements over \mathbb{Q} .
- (a) $\zeta + \zeta^5$,
- (b) $\zeta^3 + \zeta^5$,
- (c) $\zeta^3 + \zeta^5 + \zeta^6$.