Comprehensive Examination in Algebra Department of Mathematics, Temple University

January 2012

Part I. Do three of these problems.

I.1 Let G be a group (not necessarily finite).

(a) If H, K ≤ G are two subgroups of finite index in G, prove that |G : H ∩ K| is finite as well.
(b) Let H, K ≤ G be arbitrary subgroups. Write H ~ K if and only if H ∩ K has finite index in

both H and K. Show that \sim defines an equivalence relation on the set of all subgroups of G.

(c) Given a subgroup $H \leq G$, show that $\{x \in G \mid xHx^{-1} \sim H\}$ is a subgroup of G.

I.2 Let F be an algebraically closed field, let n be a positive integer, and let A be an $n \times n$ matrix with entries in F such that $A^3 = A$.

(a) Prove that if F has characteristic zero then A is diagonalizable.

(b) Give an example showing that the conclusion of (a) need not hold in positive characteristic.

I.3 Prove that the intersection of all of the maximal ideals of $\mathbb{Z}[x]$ is the zero ideal.

I.4 Let p be a prime, and let a be a nonzero element of \mathbb{F}_p . Prove that $x^p - x + a$ is an irreducible separable polynomial of $\mathbb{F}_p[x]$.

Part II. Do two of these problems.

II.1 Let G be a group of order p^3q , where p and q are primes (not necessarily distinct). Prove that G is not simple. (Do not use Burnside's p^aq^b Theorem.)

II.2 Let F/K be a field extension and let $R = \{f(x) \in F[x] \mid f(0) \in K\}$, the subring of the polynomial ring F[x] consisting of all polynomials with constant term $\in K$. (You need not show that this is a subring of F[x].)

(a) Show that $I = \{f(x) \in F[x] \mid f(0) = 0\}$ is a maximal ideal of R.

- (b) Show that the ideal I is finitely generated if and only if the extension F/K has finite degree.
- (c) Show that I/(x) is the only prime ideal of R/(x).

II.3 Let F be the splitting field of $x^3 - 2$ over \mathbb{Q} , and let G denote the Galois group of F over \mathbb{Q} .

(a) Prove that G is isomorphic to the symmetric group S_3 .

(b) Give a set of generators of G described as explicit automorphisms of F.