Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2023

Part I. Solve three of the following problems.

I.1 Which of the following polynomials are irreducible? (Justify your answer.)

- (a) $x^4 + 6x^3 4x^2 + 16x + 6 \in \mathbb{Z}[x]$
- (b) $x^4 + 6x^3 4x^2 + 16x + 6 \in \mathbb{F}_5[x]$ (where \mathbb{F}_5 is the field of five elements)
- (c) $x^3 3x^2 5x 3 \in \mathbb{Z}[x]$

I.2 Let *E* be a field and $f(x), g(x) \in E[x]$ be irreducible quadratic polynomials. Set K = E[x]/(f(x)) and L = E[x]/(g(x)). Prove that

$$M = E[x, y]/(f(x), g(y))$$

is a field if and only if $K \not\cong L$.

I.3 Let $\alpha = \sqrt{3}$ and set

$$R = \mathbb{Z}[\alpha] = \{a + b\alpha : a, b \in \mathbb{Z}\}.$$

Consider the principal ideal $\mathcal{P} = (5)$ of R generated by 5.

- (a) Prove that the quotient ring R/\mathcal{P} is a field with twenty-five elements.
- (b) Prove that Q = (11) is not a prime ideal of R.
- **I.4** Let G be a finite group acting transitively on a set X.
- (a) Suppose that |G| = 65 and there is an element $g \in G$ of order 5 such that $g(x_0) = x_0$ for some $x_0 \in X$ (i.e., g has a fixed point on X). Show that g(x) = x for all $x \in X$.
- (b) Show that part (a) is false if |G| = 60: There is an action of the alternating group A_5 on a set X so that every 5-cycle in A_5 has a fixed point in X but no 5-cycle fixes every $x \in X$. (*Hint*: You can find such an X with |X| = 6.)

Part II. Solve two of the following problems.

II.1 Let p be a prime number, \mathbb{F}_p be the field of p elements, and $G = \operatorname{GL}_2(\mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in \mathbb{F}_p .

- (a) Prove that the group U_p of upper-triangular matrices with ones on the diagonal is a Sylow *p*-subgroup of *G*.
- (b) Show that the normalizer of U_p in G is the group B_p of all upper-triangular matrices.
- (c) Conclude that G has exactly p + 1 Sylow p-subgroups.

II.2 Let *E* be the splitting field over \mathbb{Q} of the polynomial $p(x) = x^7 - 3$.

- (a) Compute the Galois group $\operatorname{Gal}(E/\mathbb{Q})$, either with a finite presentation or the abstract group structure, with a concrete description of the action on roots of p(x).
- (b) Find a primitive generator for E over \mathbb{Q} .
- (c) Describe all the subfields of E that are Galois over \mathbb{Q} as the subfield fixed by some subgroup of $\operatorname{Gal}(E/\mathbb{Q})$. You do not need to compute primitive generators for each field.
- **II.3** Let $\Phi_{12}(x) = x^4 x^2 + 1 \in \mathbb{Q}[x]$.
- (a) Prove that p(x) is irreducible over \mathbb{Q} . (*Hint*: What are its roots in \mathbb{C} ?)
- (b) Give an explicit example of a 4×4 matrix $A \in M_4(\mathbb{Q})$ with characteristic polynomial p(x). You must prove that your matrix has this characteristic polynomial.
- (c) Prove that p(x) is also the minimal polynomial of A.
- (d) Prove that your matrix A has order twelve, that is, $A^{12} = \text{Id}$, where Id is the 4×4 identity matrix.