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Part I. Solve three of the following problems.

I.1 Which of the following polynomials are irreducible? (Justify your answer.)

(a) x4 + 6x3 − 4x2 + 16x+ 6 ∈ Z[x]

(b) x4 + 6x3 − 4x2 + 16x+ 6 ∈ F5[x] (where F5 is the field of five elements)

(c) x3 − 3x2 − 5x− 3 ∈ Z[x]

I.2 Let E be a field and f(x), g(x) ∈ E[x] be irreducible quadratic polynomials. Set
K = E[x]/(f(x)) and L = E[x]/(g(x)). Prove that

M = E[x, y]/(f(x), g(y))

is a field if and only if K 6∼= L.

I.3 Let α =
√

3 and set

R = Z[α] ={a+ bα : a, b ∈ Z}.

Consider the principal ideal P = (5) of R generated by 5.

(a) Prove that the quotient ring R/P is a field with twenty-five elements.

(b) Prove that Q = (11) is not a prime ideal of R.

I.4 Let G be a finite group acting transitively on a set X.

(a) Suppose that |G| = 65 and there is an element g ∈ G of order 5 such that g(x0) = x0
for some x0 ∈ X (i.e., g has a fixed point on X). Show that g(x) = x for all x ∈ X.

(b) Show that part (a) is false if |G| = 60: There is an action of the alternating group A5

on a set X so that every 5-cycle in A5 has a fixed point in X but no 5-cycle fixes every
x ∈ X. (Hint : You can find such an X with |X| = 6.)
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Part II. Solve two of the following problems.

II.1 Let p be a prime number, Fp be the field of p elements, and G = GL2(Fp) be the
group of invertible 2× 2 matrices with entries in Fp.

(a) Prove that the group Up of upper-triangular matrices with ones on the diagonal is a
Sylow p-subgroup of G.

(b) Show that the normalizer of Up in G is the group Bp of all upper-triangular matrices.

(c) Conclude that G has exactly p+ 1 Sylow p-subgroups.

II.2 Let E be the splitting field over Q of the polynomial p(x) = x7 − 3.

(a) Compute the Galois group Gal(E/Q), either with a finite presentation or the abstract
group structure, with a concrete description of the action on roots of p(x).

(b) Find a primitive generator for E over Q.

(c) Describe all the subfields of E that are Galois over Q as the subfield fixed by some
subgroup of Gal(E/Q). You do not need to compute primitive generators for each field.

II.3 Let Φ12(x) = x4 − x2 + 1 ∈ Q[x].

(a) Prove that p(x) is irreducible over Q. (Hint : What are its roots in C?)

(b) Give an explicit example of a 4 × 4 matrix A ∈ M4(Q) with characteristic polynomial
p(x). You must prove that your matrix has this characteristic polynomial.

(c) Prove that p(x) is also the minimal polynomial of A.

(d) Prove that your matrix A has order twelve, that is, A12 = Id, where Id is the 4 × 4
identity matrix.
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