Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2022

Part I. Do three of these problems.

I.1 (a) Prove that none of the following five groups of order 8 are isomorphic:

 $(\mathbb{Z}/2\mathbb{Z})^{\oplus 3}, \ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}, \ \mathbb{Z}/8\mathbb{Z}, \ D_4 = \langle r, s \mid r^4, s^2, rsrs \rangle, \ Q_8 = \langle a, b \mid a^4, a^2b^2, b^{-1}aba \rangle.$

(b) Prove that if G is a group of order 8, then G must be isomorphic to one of the groups listed in part (a).

I.2 Let R be a commutative ring with $1 \neq 0$ and such that for every $x \in R$, there is some natural number n > 1 such that $x^n = x$. Show that every prime ideal of R is maximal.

I.3 Let V be a finite-dimensional vector space over a field K and let $T \in \operatorname{End}_{K}(V)$ be a linear operator. Consider a family of subspaces $W_{i} \subseteq V$ $(i \in I)$ such that $T(W_{i}) \subseteq W_{i}$ and put $T_{i} = T|_{W_{i}} \in \operatorname{End}_{K}(W_{i})$. With $m, m_{i} \in K[x]$ denoting the minimal polynomials of T and T_{i} , show:

(a) m_i divides m.

(b) If $V = \sum_{i \in I} W_i$, then *m* is the least common multiple of the m_i .

I.4 Let R be a commutative ring with identity and $f = \sum_{i=0}^{\infty} a_i x^i \in R[x]$. Show that a_0 is a unit in R if and only if f is a unit in R[x].

Part II. Do two of these problems.

II.1 Prove that no group of order $105 = 3 \cdot 5 \cdot 7$ is simple.

II.2 Find the rank, elementary divisors, and invariant factors of the finitely generated \mathbb{Z} -module $\mathbb{Z}^3/\langle (2,4,8), (6,3,9) \rangle$.

II.3 Let F_1 and F_2 be Galois extensions of a field K, both contained in some fixed algebraic closure of K, and let $F = F_1F_2$ be the composite field. Show:

(a) F/K is Galois.

(b) The Galois group $\operatorname{Gal}(F/K)$ is abelian if and only if both $\operatorname{Gal}(F_i/K)$ are abelian.