Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2021

Part I. Do three of these problems.

I.1 Let S_n be the symmetric group on n letters and G be an abelian subgroup of S_n that acts transitively on $\{1, 2, ..., n\}$.

- a) Prove that the order of G is n.
- b) Give an example of an abelian subgroup $G \leq S_n$ for some *n* such that *G* acts transitively on $\{1, 2, \ldots, n\}$ and is not cyclic. (Please justify these two properties.)

I.2 Suppose that R is a commutative ring such that for every $x \in R$, there is some natural number n > 1 such that $x^n = x$.

- a) Prove that every prime ideal of R is maximal.
- b) Give an example of a commutative ring R with the above property and such that R is non-trivial and R is not a field.

I.3 Let V be a finite-dimensional vector space over the field \mathbb{R} with $\dim_{\mathbb{R}} V \geq 3$ and let $T: V \to V$ be a linear operator. Show that there exists a subspace $W \subseteq V$ with $\{\vec{0}\} \neq W \subsetneq V$ such that $T(W) \subseteq W$.

I.4 Let F/K be a field extension and let R := K + xF[x] be the set of all polynomials in the polynomial ring F[x] such that the constant term belongs to K. Put I := xF[x].

(a) Show that R is a subring of F[x] and I is an ideal of R.

(b) Show that I is a finitely generated ideal of R if and only if the field extension F/K is finite.

Part II. Do two of these problems.

II.1 Let G be a group of order p^3 , where p is prime. Determine all possibilities for the number of conjugacy classes in G and their sizes.

II.2 Let R be a commutative ring and let M be a maximal ideal of R.

(a) Assuming M to be principal, show that there is no ideal I of R such that $M^2 \subsetneqq I \subsetneqq M$.

(b) Give an example to show that (a) is false if M is not assumed to be principal.

II.3 Consider the subfields $F = \mathbb{Q}(\sqrt[8]{2}, i)$ and $K = \mathbb{Q}(\sqrt{2})$ of \mathbb{C} , with $i := \sqrt{-1}$ as usual. Show that F/K is Galois and prove that $\operatorname{Gal}(F/K)$ is isomorphic to the dihedral group D_4 of order 8.