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In these problems, groups need not be finite and, unless explicitly stated otherwise, rings need not
be commutative. All rings and ring homomorphism are understood to be unital: each ring R has
an identity element, 1R , which is contained in all subrings of R, and f(1R) = 1S holds for every
ring homomorphism f : R→ S.

Part I. Do three of these problems.

I.1 Let G be a group, let N be a finite normal subgroup of G, and let H be a subgroup of G
having finite index in G. Prove that if |N | and |G : H| are relatively prime, then N ⊆ H .

I.2 Let K be a field and let T : K[x]→ K[x] be an automorphism of the polynomial ring K[x]
having the following property (*): T (λ) = λ for all λ ∈ K.

a) Prove that there exist α, β ∈ K, α 6= 0 such that T (x) = αx+ β.

b) Deduce that the automorphisms of K[x] satisfying (*) form a group under composition,
which is isomorphic to the semi-direct product K× n K. Here K× = (K \ {0}, ·) and
K = (K,+) are the multiplicative and the additive group of K, respectively, and K× acts
on K by multiplication.

I.3 Let R be a commutative integral domain. A left R-module M is said to be divisible if
rM = {rm | m ∈M} = M for all nonzero r ∈ R.

a) Prove that there exist divisible R-modules.

b) Suppose that R is a PID that is not a field. Prove that no nonzero finitely generated left
R-module is divisible.

I.4 Let R be a ring containing a field K as a central subring (i.e., rλ = λr for all r ∈ R, λ ∈ K).
Let a ∈ R be algebraic over K; that is, there exists a nonzero polynomial p(x) in K[x] such that
p(a) = 0. Further suppose that p(x) has been chosen to be of least degree.

a) Show by example that p(x) need not be an irreducible polynomial.

b) Show that K[a], the smallest subring of R containing a and K, is a field if and only if p(x)
is irreducible.
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Part II. Do two of these problems.

II.1 For any group G, define Φ(G) to be the intersection of all maximal subgroups of G. Prove:

a) Φ(G) is a characteristic subgroup of G. (Φ(G) is called the Frattini subgroup of G.)

b) If G is nilpotent, then all maximal subgroups of G are normal and have prime index. Con-
clude that the derived subgroup [G,G] is contained in Φ(G).

c) If G is finitely generated, then every proper subgroup H � G is contained in a maximal
subgroup. Conclude that if G = HΦ(G), then G = H .

II.2 A ring homomorphism f : R → S is called centralizing if the ring S is generated by f(R)
together with CS(f(R)) = {s ∈ S | sf(r) = f(r)s for all r ∈ R}. (For example, if f is surjective
or S is commutative, then f is evidently centralizing.) Prove:

a) Composites of centralizing ring homomorphisms are centralizing.

b) If f is centralizing, then f(I)S is an ideal (twosided) for every ideal I of R.

c) If f is centralizing, then the preimage f−1(P ) = {r ∈ R | f(r) ∈ P} of every prime ideal
P of S is a prime ideal of R.

II.3 Let E be the splitting field of x3 − 2 over Q.

a) Prove that [E : Q] = 6 and the Galois group G := Gal(E/Q) is isomorphic to S3.

b) Find all intermediate fields of the extension E/Q corresponding to all four proper nontrivial
subgroups of S3.
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