Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2018

In these problems, groups need not be finite and, unless explicitly stated otherwise, rings need not be commutative. All rings and ring homomorphism are understood to be unital: each ring R *has* an identity element, 1_R , which is contained in all subrings of R, and $f(1_R) = 1_S$ holds for every *ring homomorphism* $f: R \rightarrow S$.

Part I. Do three of these problems.

I.1 Let G be a group, let N be a finite normal subgroup of G, and let H be a subgroup of G having finite index in G. Prove that if |N| and $|G : H|$ are relatively prime, then $N \subseteq H$.

I.2 Let K be a field and let $T : K[x] \to K[x]$ be an automorphism of the polynomial ring $K[x]$ having the following property (*): $T(\lambda) = \lambda$ for all $\lambda \in K$.

- a) Prove that there exist $\alpha, \beta \in K$, $\alpha \neq 0$ such that $T(x) = \alpha x + \beta$.
- b) Deduce that the automorphisms of $K[x]$ satisfying (*) form a group under composition, which is isomorphic to the semi-direct product $K^{\times} \ltimes K$. Here $K^{\times} = (K \setminus \{0\}, \cdot)$ and $K = (K, +)$ are the multiplicative and the additive group of K, respectively, and K^{\times} acts on K by multiplication.

I.3 Let R be a commutative integral domain. A left R-module M is said to be *divisible* if $rM = \{rm \ |m \in M\} = M$ for all nonzero $r \in R$.

- a) Prove that there exist divisible R-modules.
- b) Suppose that R is a PID that is not a field. Prove that no nonzero finitely generated left R-module is divisible.

I.4 Let R be a ring containing a field K as a central subring (i.e., $r\lambda = \lambda r$ for all $r \in R, \lambda \in K$). Let $a \in R$ be algebraic over K; that is, there exists a nonzero polynomial $p(x)$ in $K[x]$ such that $p(a) = 0$. Further suppose that $p(x)$ has been chosen to be of least degree.

- a) Show by example that $p(x)$ need not be an irreducible polynomial.
- b) Show that $K[a]$, the smallest subring of R containing a and K, is a field if and only if $p(x)$ is irreducible.

Part II. Do two of these problems.

- **II.1** For any group G, define $\Phi(G)$ to be the intersection of all maximal subgroups of G. Prove:
	- a) $\Phi(G)$ is a characteristic subgroup of G. ($\Phi(G)$ is called the *Frattini subgroup* of G.)
	- b) If G is nilpotent, then all maximal subgroups of G are normal and have prime index. Conclude that the derived subgroup $[G, G]$ is contained in $\Phi(G)$.
	- c) If G is finitely generated, then every proper subgroup $H \subsetneq G$ is contained in a maximal subgroup. Conclude that if $G = H\Phi(G)$, then $G = H$.

II.2 A ring homomorphism $f: R \to S$ is called *centralizing* if the ring S is generated by $f(R)$ together with $C_S(f(R)) = \{s \in S \mid sf(r) = f(r)s \text{ for all } r \in R\}$. (For example, if f is surjective or S is commutative, then f is evidently centralizing.) Prove:

- a) Composites of centralizing ring homomorphisms are centralizing.
- b) If f is centralizing, then $f(I)S$ is an ideal (twosided) for every ideal I of R.
- c) If f is centralizing, then the preimage $f^{-1}(P) = \{r \in R \mid f(r) \in P\}$ of every prime ideal P of S is a prime ideal of R .
- **II.3** Let E be the splitting field of $x^3 2$ over Q.
	- a) Prove that $[E : \mathbb{Q}] = 6$ and the Galois group $G := \text{Gal}(E/\mathbb{Q})$ is isomorphic to S_3 .
	- b) Find all intermediate fields of the extension E/\mathbb{Q} corresponding to all four proper nontrivial subgroups of S_3 .