Comprehensive Examination in Algebra Department of Mathematics, Temple University

August 2017

Part I. Do three of these problems.

I.1 Let *n* be an odd integer ≥ 3 and G_n be the group with the following presentation

$$\langle r, s \mid r^n, s^2, srs^{-1}r \rangle.$$

Prove that the formulas

$$\varphi(r) := (1, 2, \dots, n), \qquad \varphi(s) := (2, n)(3, n-1) \dots ((n+1)/2, (n+3)/2)$$

define a group homomorphism $\varphi : G_n \to S_n$, the symmetric group of degree n. Use this homomorphism to prove that G_n has order 2n and that φ is injective.

- **I.2** Consider the polynomial $p(x) := x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$.
 - a) Prove that p(x) is irreducible over \mathbb{Q} .
 - **b**) Find a 4×4 matrix (with rational entries) whose characteristic polynomial is p(x). *Please, do not forget to show that the characteristic polynomial of your matrix is indeed* p(x).

I.3 Let F be a subring of an integral domain R. Prove that, if F is a field and R is a finite dimensional vector space over F, then R is also a field.

I.4 Let F be a field and let p be an integer > 1. A polynomial of the form $\sum_{i=0}^{n} f_i t^{p^i} \in F[t]$ is called a p-polynomial. Show that every $0 \neq f(t) \in F[t]$ is a factor of some nonzero p-polynomial.

Part II. Do two of these problems.

- **II.1** Let G be a finitely generated group and let n be a positive integer. Prove:
 - a) There are at most finitely many subgroups $H \leq G$ such that |G:H| = n.
 - **b)** For any $H \leq G$ with $|G:H| < \infty$, there is a characteristic subgroup of $C \leq G$ such that $C \leq H$ and $|G:C| < \infty$.

Recall that a subgroup $C \leq G$ is called characteristic if $\varphi(C) = C$ for all $\varphi \in Aut(G)$. Hint: Since G is finitely generated, there are only finitely many group homomorphisms from G to the symmetric group S_n .

II.2 Let R be a left noetherian domain (not necessarily commutative). Show that any two $0 \neq x, y \in R$ have a nonzero common left multiple: $Rx \cap Ry \neq 0$. **Hint:** Consider the chain $L_0 \subseteq L_1 \subseteq \ldots$ with $L_n = \sum_{i=0}^n Rxy^i$.

II.3 Recall that, for every prime p, the Galois group of $\mathbb{Q}(e^{\frac{2\pi i}{p}})/\mathbb{Q}$ is isomorphic to the group of units of the ring $\mathbb{Z}/p\mathbb{Z}$ and the latter group is cyclic of order p-1. Let p=11 and put $\zeta := e^{\frac{2\pi i}{11}}$.

- **a**) Find a generator of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$.
- **b**) Find primitive elements of the intermediate fields E_1 , E_2 of $\mathbb{Q}(\zeta)/\mathbb{Q}$ corresponding to the two proper non-trivial subgroups of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \mathbb{Z}/10\mathbb{Z}$.