Another Constraint on the Perfect Cuboid

Dean Quach

Temple University

April 1, 2023

Dean Quach (Temple University) Another Constraint on the Perfect Cuboic

B → B

What is the Perfect Cuboid?

$$a^{2} + b^{2} = d^{2}$$
$$a^{2} + c^{2} = e^{2}$$
$$b^{2} + c^{2} = f^{2}$$
$$a^{2} + b^{2} + c^{2} = g^{2}$$

3)) J

$$\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \\ a^2 + b^2 + c^2 = g^2 \end{cases}$$

where $a, b, c, d, e, f, g \in \mathbb{N}$

э

The Pythagorean Triangle.

3)) J

The Pythagorean Triangle.

• The Pythagorean Triple: $a^2 + b^2 = c^2$

The Pythagorean Triangle.

The Pythagorean Triple: a² + b² = c²
 (a, b, c) = (m² - n², 2mn, m² + n²)

The Pythagorean Triangle.

The Pythagorean Triple: a² + b² = c²
 (a,b,c) = (m² - n², 2mn, m² + n²) where m, n ∈ Z
 m > n, m ≠ n mod 2, gcd(m,n) = 1

< 47 ▶

The Euler Brick

The Euler Brick

• The Euler Brick:
$$\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}$$

B → B

The Euler Brick

• The Euler Brick:
$$\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}$$

• Edges $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

12.12

• Face Diagonals $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

12

The Euler Brick

• The Euler Brick:
$$\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}$$

• Edges $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

• Face Diagonals $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

12

• where (u, v, w) is a Pythgorean Triple, $u^2 + v^2 = w^2$

. 2 . 2

The Euler Brick

• The Euler Brick:
$$\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}$$

• Edges $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

• Face Diagonals $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

.2

• where (u, v, w) is a Pythgorean Triple, $u^2 + v^2 = w^2$

•
$$(a, b, c) = (240, 252, 275)$$
 and $(d, e, f) = (348, 365, 373)$

▲ ■ ▶ ▲ ■ ▶ ■ April 1, 2023

• The Euler Brick:
$$\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}$$

∃ >

• The Euler Brick:
$$\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}$$

• With the new constraint: $a^2 + b^2 + c^2 = g^2$

< 47 ▶

2

• There are various configurations of edges and diagonals divisible by 2, total being 2⁸.

- There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.

- There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.
- For $p \in \{5,7,11,19\}$, one edge must be divisible by p.

- There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.
- For $p \in \{5,7,11,19\}$, one edge must be divisible by p.
- One edge or space diagonal must be divisible by 13.

- There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.
- For $p \in \{5,7,11,19\}$, one edge must be divisible by p.
- One edge or space diagonal must be divisible by 13.
- For p ∈ {17,29,37}, one edge, face diagonal or space diagonal must be divisible by p.

• What if we considered the product of all of these values?

э

What if we considered the product of all of these values?
P = (edges)(face diagonals)(space diagonals)

• What if we considered the product of all of these values?

• $P = (edges)(face \ diagonals)(space \ diagonals)$

• If we did, then we would know that it is the minimum divisor of the cuboid.

- What if we considered the product of all of these values?
 P = (edges)(face diagonals)(space diagonals)
- If we did, then we would know that it is the minimum divisor of the cuboid.
- So far $2^8 \cdot 3^4 \cdot 5^3 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37$

7 / 24

• What if we considered the product of all of these values?

• *P* = (edges)(face diagonals)(space diagonals)

- If we did, then we would know that it is the minimum divisor of the cuboid.
- So far $2^8 \cdot 3^4 \cdot 5^3 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37$
- Can we add another prime?
- Can we raise the power of one of these primes?

<≣⇒

• • • • • • • • •

• Thomas A. Plick -
$$2^8 \cdot 3^4 \cdot 5^{3^4} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37$$

Using properties of the pythagorean triples that make up the system.

B → B

• Thomas A. Plick -
$$2^8 \cdot 3^4 \cdot 5^{3^4} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37$$

Using properties of the pythagorean triples that make up the system.

Past discoveries have been from utilizing 2, 3, and 5.

э

8/24

• Thomas A. Plick -
$$2^8 \cdot 3^4 \cdot 5^{3^4} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37$$

Using properties of the pythagorean triples that make up the system.

Past discoveries have been from utilizing 2, 3, and 5. Notably, $7 \le p_i \le 37$ (not including 23, 31) are *not properties* of Pythag. Triples. They are *unique properties* of the *cuboid*.

• Thomas A. Plick - $2^8 \cdot 3^4 \cdot 5^{3^4} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37$

Using properties of the pythagorean triples that make up the system.

Past discoveries have been from utilizing 2, 3, and 5. Notably, $7 \le p_i \le 37$ (not including 23, 31) are *not properties* of Pythag. Triples. They are *unique properties* of the *cuboid*.

Goal: Raise one of these known prime divisors, $7 \le p_i \le 37$. We will look to see if there exists an *n*, such that $7^n | P$.

$$A = \begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \\ a^2 + b^2 + c^2 = g^2 \end{cases}$$

▲ 西型

표 문 표

$$A = \begin{cases} a^{2} + b^{2} = d^{2} \\ a^{2} + c^{2} = e^{2} \\ b^{2} + c^{2} = f^{2} \\ a^{2} + b^{2} + c^{2} = g^{2} \end{cases} A \equiv \begin{cases} a^{2} + b^{2} = d^{2} \\ a^{2} + c^{2} = e^{2} \\ b^{2} + c^{2} = e^{2} \\ a^{2} + b^{2} + c^{2} = g^{2} \end{cases} \mod n$$

Dean Quach (Temple University) Another Constraint on the Perfect Cuboic

▲ 西型

3

$$\implies A = \begin{cases} a^2 + b^2 \equiv d^2 \mod n \\ a^2 + c^2 \equiv e^2 \mod n \\ b^2 + c^2 \equiv f^2 \mod n \\ a^2 + b^2 + c^2 \equiv g^2 \mod n \end{cases}$$

Dean Quach (Temple University) Another Constraint on the Perfect Cuboic

< 47 ▶

표 문 문

And if we know the set of Quadratic Residues mod n := QR

$$\implies A = \begin{cases} a^2 + b^2 \equiv d^2 \mod n \\ a^2 + c^2 \equiv e^2 \mod n \\ b^2 + c^2 \equiv f^2 \mod n \\ a^2 + b^2 + c^2 \equiv g^2 \mod n \end{cases} \implies \begin{cases} a + b \in QR \\ a + c \in QR \\ b + c \in QR \\ a + b + c \in QR \end{cases}$$

where $a, b, c \in QR$ themselves.

Making the set of Quadratic Residues modulo p. $(QR \mod p)$.

Making the set of Quadratic Residues modulo p. (*QR* mod p). So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? Making the set of Quadratic Residues modulo p. ($QR \mod p$). So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$?

$0^2 \equiv x$	mod <i>p</i>
$1^2 \equiv x$	mod <i>p</i>
$2^2 \equiv x$	mod <i>p</i>
$3^2 \equiv x$	mod <i>p</i>
$4^2 \equiv x$	mod <i>p</i>
$5^2 \equiv x$	mod <i>p</i>
$(x^2 \equiv x)$	mod p)

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For p = 7,

$0^2 \equiv x$	mod <i>p</i>	$\implies 0 \equiv 0$	mod 7
----------------	--------------	-----------------------	-------

 $1^2 \equiv x \mod p \implies 1 \equiv 1 \mod 7$

$$2^2 \equiv x \mod p \qquad \implies 4 \equiv 4 \mod 7$$

- $3^2 \equiv x \mod p \qquad \implies 9 \equiv 2 \mod 7$
- $4^2 \equiv x \mod p \qquad \implies 16 \equiv 2 \mod 7$
- $5^2 \equiv x \mod p \implies 25 \equiv 4 \mod 7$
- $6^2 \equiv x \mod p \implies 36 \equiv 1 \mod 7$
- $7^2 \equiv x \mod p$

 $\implies 49 \equiv 0 \mod 7$

Quadratic Residues

 $6^2 \equiv x \mod p$

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For p = 7,

$0^2 \equiv x$	mod <i>p</i>	$\implies 0 \equiv 0$	mod 7

$$1^2 \equiv x \mod p \qquad \implies 1 \equiv 1 \mod 7$$

$$2^2 \equiv x \mod p \implies 4 \equiv 4 \mod 7$$

$$3^2 \equiv x \mod p \implies 9 \equiv 2 \mod 7$$

$$4^2 \equiv x \mod p \implies 16 \equiv 2 \mod 7$$

$$5^2 \equiv x \mod p \implies 25 \equiv 4 \mod 7$$

$$\implies$$
 36 \equiv 1 mod

7

$$7^2 \equiv x \mod p \implies 49 \equiv 0 \mod 7$$

Quadratic Residues

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For p = 7,

$0^2 \equiv x$	mod <i>p</i>	$\implies 0 \equiv 0$	mod 7
$1^2 \equiv x$	mod <i>p</i>	$\implies 1 \equiv 1$	mod 7
$2^2 \equiv x$	mod <i>p</i>	\implies 4 \equiv 4	mod 7
$3^2 \equiv x$	mod <i>p</i>	\implies 9 \equiv 2	mod 7
$4^2 \equiv x$	mod <i>p</i>	\implies 16 \equiv 2	mod 7
$5^2 \equiv x$	mod <i>p</i>	$\implies 25 \equiv 4$	mod 7
$6^2 \equiv x$	mod <i>p</i>	\implies 36 \equiv 1	mod 7
$7^2 \equiv x$	mod <i>p</i>	\implies 49 \equiv 0	mod 7

Quadratic Residues

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For p = 7,

$0^2 \equiv x$	mod <i>p</i>	$\implies 0 \equiv 0$	mod 7
$1^2 \equiv x$	mod <i>p</i>	$\implies 1 \equiv 1$	mod 7
$2^2 \equiv x$	mod <i>p</i>	\implies 4 \equiv 4	mod 7
$3^2 \equiv x$	mod <i>p</i>	\implies 9 \equiv 2	mod 7
$4^2 \equiv x$	mod <i>p</i>	\implies 16 \equiv 2	mod 7
$5^2 \equiv x$	mod <i>p</i>	$\implies 25 \equiv 4$	mod 7
$6^2 \equiv x$	mod <i>p</i>	\implies 36 \equiv 1	mod 7
$7^2 \equiv x$	mod <i>p</i>	\implies 49 \equiv 0	mod 7

So we get $QR \mod 7 = \{0, 1, 2, 4\}$

```
Psuedocode for QR mod 7 = \{0, 1, 2, 4\}
```

A quick example of what we are looking for.

э

18 / 24

A quick example of what we are looking for. We look at combinations/vectors of $C = QR \times QR \times QR = \{x_1, x_2, x_3\}$. A quick example of what we are looking for. We look at combinations/vectors of $C = QR \times QR \times QR = \{x_1, x_2, x_3\}$.

For $QR \mod 7 = \{0,1,2,4\}$. The only C vectors that work are, $\{0,0,0\}, \{0,0,1\}, \{0,0,2\}, \{0,0,4\}, \{0,1,1\}, \{0,2,2\}, \{0,4,4\}.$

A quick example of what we are looking for. We look at combinations/vectors of $C = QR \times QR \times QR = \{x_1, x_2, x_3\}$.

For $QR \mod 7 = \{0, 1, 2, 4\}$. The only C vectors that work are, $\{0, 0, 0\}, \{0, 0, 1\}, \{0, 0, 2\}, \{0, 0, 4\}, \{0, 1, 1\}, \{0, 2, 2\}, \{0, 4, 4\}$.

But notice that all combinations have a 0, so we can conclude that at least one square is divisible by 7, and therefore at least one edge is divisible by 7.

Combinations

```
Psuedocode: C = QR \times QR \times QR = (QR)^3
```

```
A=allcomb(QR,QR,QR)
        %First we make all combinations of C
H= sum("all columns" of A)
        %we are checking a+b+c in QR?
        %(for each row/vector/combination)
A =
        0,0,0
        0,0,1
        0,0,2
        0,0,4
        0.1.0
         . . .
H=0,1,2,4,1,2,3,5,\ldots
```

Passes

Psuedocode: Keeping what we want, Deleting the rest

```
Pass123=[vector (we don't know yet)]
for i = 1 to length(H)
        for k = 1 to length(QR)
                if H mod p \in QR
                Pass123 = [Pass123 i]
                %this counts the index of each H (sum)
        end
end
A 123=A(Pass123,:)
        \% we choose the Pass123(i) rows of A, and keep them.
        %the rest are just "deleted"
```

Passes

We then repeat this process, checking for

- $a+b \in QR$
- $a + c \in QR$
- $b + c \in QR$

We then repeat this process, checking for

- $a+b \in QR$
- $a + c \in QR$
- $b+c \in QR$

We also need to check if any of the sums of the elements in each combination are $\equiv 0 \mod p$.

We then repeat this process, checking for

- $a+b \in QR$
- $a + c \in QR$
- $b+c \in QR$

We also need to check if any of the sums of the elements in each combination are $\equiv 0 \mod p$.

Finally, if the final array is empty \implies all combinations had 0 (or $\equiv 0 \mod p$) \implies the edge is divisible by p. We then repeat this process, checking for

- $a+b \in QR$
- $a + c \in QR$
- $b+c \in QR$

We also need to check if any of the sums of the elements in each combination are $\equiv 0 \mod p$.

Finally, if the final array is empty \implies all combinations had 0 (or $\equiv 0 \mod p$) \implies the edge is divisible by p.

Note, if final array has combinations, then there exist combinations such that 0 isn't a part of it, so we cannot conclude that p is a divisor. (it can still be shown that p is a divisor in other ways, just not with modular arithmetic).

21/24

In the end we have a MATLAB program that we can plug in divisors and check if they do divide an edge.

In the end we have a MATLAB program that we can plug in divisors and check if they do divide an edge.

As I was checking and running larger primes past 100, my professor had the great idea of checking 7^2 .

In the end we have a MATLAB program that we can plug in divisors and check if they do divide an edge.

As I was checking and running larger primes past 100, my professor had the great idea of checking 7^2 .

Lo and behold it works, an empty final array \implies all combinations had 0 (or $\equiv 0 \mod p$) \implies the edge is divisible by 7².

- We had run time issues for larger numbers, (namely: $11^2 \& 7^3$)
- We also looked out **rulling out** other primes, which is *less impressive*...

- We had run time issues for larger numbers, (namely: $11^2 \& 7^3$)
- We also looked out **rulling out** other primes, which is *less* impressive...
 - If p is an odd prime, then $\begin{pmatrix} p \\ 3 \end{pmatrix} \iff p \equiv \pm 1 \mod 12$ If p is an odd prime, then $\begin{pmatrix} p \\ 2 \end{pmatrix} \iff p \equiv \pm 1 \mod 8$

 - From these, 4 cases arrise:

- We had run time issues for larger numbers, (namely: $11^2 \& 7^3$)
- We also looked out **rulling out** other primes, which is *less* impressive...
 - If p is an odd prime, then $\begin{pmatrix} p \\ 3 \end{pmatrix} \iff p \equiv \pm 1 \mod 12$ If p is an odd prime, then $\begin{pmatrix} p \\ 2 \end{pmatrix} \iff p \equiv \pm 1 \mod 8$

 - From these, 4 cases arrise:

•
$$p \equiv 1 \mod 12 \land p \equiv 1 \mod 8$$

•
$$p \equiv 1 \mod 12 \land p \equiv 7 \mod 8$$

•
$$p \equiv 11 \mod 12 \land p \equiv 1 \mod 8$$

•
$$p \equiv 11 \mod 12 \land p \equiv 7 \mod 8$$

- We had run time issues for larger numbers, (namely: $11^2 \& 7^3$)
- We also looked out **rulling out** other primes, which is *less* impressive...
 - If p is an odd prime, then $\begin{pmatrix} p \\ 3 \end{pmatrix} \iff p \equiv \pm 1 \mod 12$ If p is an odd prime, then $\begin{pmatrix} p \\ 2 \end{pmatrix} \iff p \equiv \pm 1 \mod 8$

 - From these, 4 cases arrise:

•
$$p \equiv 1 \mod 12 \land p \equiv 1 \mod 8$$

• $p \equiv 1 \mod 12 \land p \equiv 7 \mod 8$
• $p \equiv 11 \mod 12 \land p \equiv 7 \mod 8$
• $p \equiv 11 \mod 12 \land p \equiv 1 \mod 8$
• $p \equiv 11 \mod 12 \land p \equiv 7 \mod 8$
• Result: $\left(\frac{2,3}{p}\right) = 1 \iff p \equiv \pm 1 \mod 24$

23 / 24

- We had run time issues for larger numbers, (namely: $11^2 \& 7^3$)
- We also looked out rulling out other primes, which is *less* impressive...
 - If p is an odd prime, then $\left(\frac{p}{3}\right) \iff p \equiv \pm 1 \mod 12$ If p is an odd prime, then $\left(\frac{p}{2}\right) \iff p \equiv \pm 1 \mod 8$

 - From these, 4 cases arrise:

•
$$p \equiv 1 \mod 12 \land p \equiv 1 \mod 8$$

- $p \equiv 1 \mod 12 \land p \equiv 7 \mod 8$
- $p \equiv 11 \mod 12 \land p \equiv 1 \mod 8$
- $p \equiv 11 \mod 12 \land p \equiv 7 \mod 8$
- Result: $\left(\frac{2,3}{p}\right) = 1 \iff p \equiv \pm 1 \mod 24$
- The reason why this is less impressive, is that it just means if you were to check the divisors $p \equiv 1 \mod 24$, you would know that they could never be a divisor of the perfect cuboid. Not as "cool" as finding divisors.

References

- Gfis. (2015) Wiki. https://en.wikipedia.org/wiki/Euler_brick
- M. Kraitchik, M. "On certain Rational Cuboids", *Scripta Math.* **11**, 317-326,1945.
- Thomas A. Plick, "A New Constraint on Perfect Cuboids," *Integers*, **17** (2017).
- Tim S. Roberts, Some constraints on the existence of a perfect cuboid. (2009).