Another Constraint on the Perfect Cuboid

Dean Quach

Temple University

April 1, 2023

Dean Quach (Temple University) [Another Constraint on the Perfect Cuboid](#page-61-0) April 1, 2023 1/24

 \leftarrow \Box

 \Rightarrow э

$$
\begin{cases}\n a^2 + b^2 = d^2 \\
 a^2 + c^2 = e^2 \\
 b^2 + c^2 = f^2 \\
 a^2 + b^2 + c^2 = g^2\n\end{cases}
$$

 \leftarrow \Box

Þ, э The Perfect Cuboid

$$
\begin{cases}\n a^2 + b^2 = d^2 \\
 a^2 + c^2 = e^2 \\
 b^2 + c^2 = f^2 \\
 a^2 + b^2 + c^2 = g^2\n\end{cases}
$$

where $a, b, c, d, e, f, g \in \mathbb{N}$

€⊡

Dean Quach (Temple University) [Another Constraint on the Perfect Cuboid](#page-0-0) April 1, 2023 2/24

∍

The Pythagorean Triangle.

э

÷.

 \rightarrow

€⊡

The Pythagorean Triangle.

The Pythagorean Triple: $a^2 + b^2 = c^2$

э

€⊡

The Pythagorean Triangle.

The Pythagorean Triple: $a^2 + b^2 = c^2$ $(a, b, c) = (m^2 - n^2, 2mn, m^2 + n^2)$

The Pythagorean Triangle.

The Pythagorean Triple: $a^2 + b^2 = c^2$ $(a, b, c) = (m^2 - n^2, 2mn, m^2 + n^2)$ where $m, n \in \mathbb{Z}$ • $m > n$, $m \not\equiv n \mod 2$, $gcd(m, n) = 1$

The Euler Brick

D.

 \Rightarrow э

4 0 3

• The Euler Brick:
$$
\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}
$$

D.

Þ, э

 \leftarrow \Box

• The Euler Brick:
$$
\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}
$$

- Edges $(a, b, c) = (u|4v^2 w^2|, b = v|4u^2 w^2|, 4uvw)$
- Face Diagonals $(a, b, c) = (u|4v^2 w^2|, b = v|4u^2 w^2|, 4uvw)$

 Ω

• The Euler Brick:
$$
\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}
$$

- Edges $(a, b, c) = (u|4v^2 w^2|, b = v|4u^2 w^2|, 4uvw)$
- Face Diagonals $(a, b, c) = (u|4v^2 w^2|, b = v|4u^2 w^2|, 4uvw)$
- where (u,v,w) is a Pythgorean Triple, $u^2+v^2=w^2$

 Ω

• The Euler Brick:
$$
\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}
$$

Edges $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

Face Diagonals $(a, b, c) = (u|4v^2 - w^2|, b = v|4u^2 - w^2|, 4uvw)$

where (u,v,w) is a Pythgorean Triple, $u^2+v^2=w^2$

•
$$
(a, b, c) = (240, 252, 275)
$$
 and $(d, e, f) = (348, 365, 373)$

 \leftarrow \Box

D.

The Perfect Cuboid

∍

B

The Perfect Cuboid

• The Euler Brick:
$$
\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}
$$

D.

∍

B

 \leftarrow \Box

€⊡

The Perfect Cuboid

• The Euler Brick:
$$
\begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases}
$$

With the new constraint: $a^2 + b^2 + c^2 = g^2$

 \leftarrow \Box

×. ← 中 活

• There are various configurations of edges and diagonals divisible by 2, total being 2⁸.

- There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.

- \bullet There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.
- For $p \in \{5,7,11,19\}$, one edge must be divisible by p.

- \bullet There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.
- For $p \in \{5,7,11,19\}$, one edge must be divisible by p.
- One edge or space diagonal must be divisible by 13.

つへへ

- \bullet There are various configurations of edges and diagonals divisible by 2, total being 2⁸.
- Two edges must have length divisible by 3 and at least one of those edges must have length divisible by 9.
- For $p \in \{5,7,11,19\}$, one edge must be divisible by p.
- One edge or space diagonal must be divisible by 13.
- For $p \in \{17, 29, 37\}$, one edge, face diagonal or space diagonal must be divisible by p.

What if we considered the product of all of these values?

э

∍

 \leftarrow \Box

What if we considered the product of all of these values? \bullet $P = (edges)(face diagonals)(space diagonals)$

 \leftarrow \Box

э

What if we considered the product of all of these values?

• $P = (edges)(face diagonals)(space diagonals)$

If we did, then we would know that it is the minimum divisor of the cuboid.

- What if we considered the product of all of these values? • $P = (edges)(face diagonals)(space diagonals)$
- **If** we did, then we would know that it is the minimum divisor of the cuboid.
- So far $2^8\cdot 3^4\cdot 5^3\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 29\cdot 37$
- What if we considered the product of all of these values? \bullet P = (edges)(face diagonals)(space diagonals)
- If we did, then we would know that it is the minimum divisor of the cuboid.
- So far $2^8\cdot 3^4\cdot 5^3\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 29\cdot 37$
- Can we add another prime?
- Can we raise the power of one of these primes?

 299

 $\rightarrow \equiv$

Ξ \mathbf{p}

4 ロト 4 母 ト 4

Thomas A. Plick - $2^8\cdot 3^4\cdot 5^{\cancel{3}^4}.$ $\overline{\mathscr{S}}\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 29\cdot 37$

Using properties of the pythagorean triples that make up the system.

• Thomas A. Plick -
$$
2^8 \cdot 3^4 \cdot 5^{4^4} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37
$$

Using properties of the pythagorean triples that make up the system.

Past discoveries have been from utilizing 2, 3, and 5.

Thomas A. Plick - $2^8\cdot 3^4\cdot 5^{\cancel{3}^4}.$ $\overline{\mathscr{S}}\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 29\cdot 37$

Using properties of the pythagorean triples that make up the system.

Past discoveries have been from utilizing 2, 3, and 5. Notably, $7 \le p_i \le 37$ (not including 23, 31) are not properties of Pythag. Triples. They are unique properties of the cuboid.

Thomas A. Plick - $2^8\cdot 3^4\cdot 5^{\cancel{3}^4}.$ $\overline{\mathscr{S}}\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 29\cdot 37$

Using properties of the pythagorean triples that make up the system.

Past discoveries have been from utilizing 2, 3, and 5. Notably, $7 < p_i < 37$ (not including 23, 31) are not properties of Pythag. Triples. They are unique properties of the cuboid.

Goal: Raise one of these known prime divisors, $7 < p_i < 37$. We will look to see if there exists an n , such that $7^n|P$.

$$
A = \begin{cases} a^{2} + b^{2} = d^{2} \\ a^{2} + c^{2} = e^{2} \\ b^{2} + c^{2} = f^{2} \\ a^{2} + b^{2} + c^{2} = g^{2} \end{cases}
$$

Dean Quach (Temple University) [Another Constraint on the Perfect Cuboid](#page-0-0) April 1, 2023 9/24

 $\rightarrow \equiv$ \rightarrow

K ロ ト K 何 ト

× ∍ D.

$$
A = \begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \end{cases} \implies A \equiv \begin{cases} a^2 + b^2 = d^2 \\ a^2 + c^2 = e^2 \\ b^2 + c^2 = f^2 \\ a^2 + b^2 + c^2 = g^2 \end{cases} \mod n
$$

Dean Quach (Temple University) [Another Constraint on the Perfect Cuboid](#page-0-0) April 1, 2023 10/24

 $\leftarrow \equiv$ \rightarrow

4 0 8

∢ 伺 ▶○ × ٠ D.

$$
\implies A = \begin{cases} a^2 + b^2 \equiv d^2 \mod n \\ a^2 + c^2 \equiv e^2 \mod n \\ b^2 + c^2 \equiv f^2 \mod n \\ a^2 + b^2 + c^2 \equiv g^2 \mod n \end{cases}
$$

4 0 8

∢ 伺 ▶○ × ٠ D.

Dean Quach (Temple University) [Another Constraint on the Perfect Cuboid](#page-0-0) April 1, 2023 11/24

 $\leftarrow \equiv$ \rightarrow

And if we know the set of Quadratic Residues mod $n := QR$

$$
\implies A = \begin{cases} a^2 + b^2 \equiv d^2 \mod n \\ a^2 + c^2 \equiv e^2 \mod n \\ b^2 + c^2 \equiv f^2 \mod n \end{cases} \implies \begin{cases} a+b \in QR \\ a+c \in QR \\ b+c \in QR \\ a+b+c \in QR \end{cases}
$$

where $a, b, c \in QR$ themselves.

э

Making the set of Quadratic Residues modulo p. $(QR \mod p)$.

 \leftarrow \Box

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p\in\mathbb{N}$, what is x^2 for $x\in\{0,1,2,3,...\}$?

 Ω

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p\in\mathbb{N}$, what is x^2 for $x\in\{0,1,2,3,...\}$?

$$
(x^2 \equiv x \mod p)
$$

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For $p = 7$,

 $1^2 \equiv x \mod p$ $\implies 1 \equiv 1 \mod 7$

$$
2^2 \equiv x \mod p \qquad \Longrightarrow 4 \equiv 4 \mod 7
$$

- $3^2 \equiv x \mod p$ \implies 9 \equiv 2 mod 7
- $4^2 \equiv x \mod p$ $\implies 16 \equiv 2 \mod 7$
- $5^2 \equiv x \mod p$ \implies 25 \equiv 4 mod 7
- $6^2 \equiv x \mod p$ \implies 36 \equiv 1 mod 7
- $7^2 \equiv x \mod p$ \implies 49 \equiv 0 mod 7

Quadratic Residues

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For $p = 7$,

$$
1^2 \equiv x \mod p \qquad \qquad \implies 1 \equiv 1 \mod 7
$$

 $2^2 \equiv x \mod p$ $\implies 4 \equiv 4 \mod 7$

$$
3^2 \equiv x \mod p \qquad \Longrightarrow 9 \equiv 2 \mod 7
$$

- $4^2 \equiv x \mod p$ $\implies 16 \equiv 2 \mod 7$
- $5^2 \equiv x \mod p$ $\implies 25 \equiv 4 \mod 7$
- $6^2 \equiv x \mod p$ \implies 36 = 1 mod 7
- $7^2 \equiv x \mod p$ $\implies 49 \equiv 0 \mod 7$

Quadratic Residues

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For $p = 7$,

- $1^2 \equiv x \mod p$ $\implies 1 \equiv 1 \mod 7$
- $2^2 \equiv x \mod p$ $\implies 4 \equiv 4 \mod 7$
- $3^2 \equiv x \mod p$ \implies 9 \equiv 2 mod 7
- $4^2 \equiv x \mod p$ $\implies 16 \equiv 2 \mod 7$
- $5^2 \equiv x \mod p$ \implies 25 \equiv 4 mod 7
- $6^2 \equiv x \mod p$ $\implies 36 \equiv 1 \mod 7$
- $7^2 \equiv x \mod p$ \implies 49 = 0 mod 7

Quadratic Residues

Making the set of Quadratic Residues modulo p. $(QR \mod p)$. So given $p \in \mathbb{N}$, what is x^2 for $x \in \{0, 1, 2, 3, ...\}$? For $p = 7$,

- $1^2 \equiv x \mod p$ $\implies 1 \equiv 1 \mod 7$
- $2^2 \equiv x \mod p$ $\implies 4 \equiv 4 \mod 7$
- $3^2 \equiv x \mod p$ \implies 9 \equiv 2 mod 7
- $4^2 \equiv x \mod p$ \implies 16 \equiv 2 mod 7
- $5^2 \equiv x \mod p$ $\implies 25 \equiv 4 \mod 7$
- $6^2 \equiv x \mod p$ $\implies 36 \equiv 1 \mod 7$
- $7^2 \equiv x \mod p$ \implies 49 = 0 mod 7

So we get $QR \mod 7 = \{0,1,2,4\}$

 QQ

```
Psuedocode for QR \mod 7 = \{0, 1, 2, 4\}
```

```
Enter p=7
for n=1: floor(p/2)
        QR(n) = rem(n^2,p)end
QR=[0,B] %adding 0, and sorting it
7 QR=sort(QR)
print(QR) = {0, 1, 2, 4}
```
A quick example of what we are looking for.

 \Box

 Ω

A quick example of what we are looking for. We look at combinations/vectors of $C = QR \times QR \times QR = \{x_1, x_2, x_3\}$. A quick example of what we are looking for. We look at combinations/vectors of $C = QR \times QR \times QR = \{x_1, x_2, x_3\}$.

For $QR \mod 7 = \{0,1,2,4\}$. The only C vectors that work are, $\{0,0,0\}, \{0,0,1\}, \{0,0,2\}, \{0,0,4\}, \{0,1,1\}, \{0,2,2\}, \{0,4,4\}.$

つへへ

A quick example of what we are looking for. We look at combinations/vectors of $C = QR \times QR \times QR = \{x_1, x_2, x_3\}$.

For $QR \mod 7 = \{0, 1, 2, 4\}$. The only C vectors that work are, $\{0,0,0\}, \{0,0,1\}, \{0,0,2\}, \{0,0,4\}, \{0,1,1\}, \{0,2,2\}, \{0,4,4\}.$

But notice that all combinations have a 0, so we can conclude that at least one square is divisible by 7, and therefore at least one edge is divisible by 7.

Combinations

```
Psuedocode: \mathcal{C}= \mathcal{Q} R \times \mathcal{Q} R \times \mathcal{Q} R = (\mathcal{Q} R)^3
```

```
A =allcomb(QR, QR, QR)2 %First we make all combinations of C
   H = \text{sum}("all columns" of A)%we are checking a+b+c in QR?
            6 %(for each row/vector/combination)
   A=0, 0, 00, 0, 10, 0, 20,0,40,1,013 ...
   H = 0, 1, 2, 4, 1, 2, 3, 5, \ldots
```
重

Passes

Psuedocode: Keeping what we want, Deleting the rest

```
Pass123=[vector (we don't know yet)]
for i = 1 to length(H)for k = 1 to length (QR)if H mod p \in QR
                Pass123 = [Pass123 i]7 %this counts the index of each H (sum)
        end
end
A 123=A(Pass123.:)
        % we choose the Pass123(i) rows of A, and keep them
        %the rest are just "deleted"
```
 Ω

- $a+b \in QR$
- $a+c \in QR$
- \bullet $b + c \in QR$

∍

€⊡

 QQ

- $a+b \in QR$
- $a+c \in QR$
- \bullet $b + c \in QR$

We also need to check if any of the sums of the elements in each combination are $\equiv 0 \mod p$.

 Ω

- $a+b \in QR$
- $a+c \in QR$
- \bullet $b+c \in QR$

We also need to check if any of the sums of the elements in each combination are $\equiv 0 \mod p$.

Finally, if the final array is empty \implies all combinations had 0 (or \equiv 0 mod p) \Longrightarrow the edge is divisible by p .

- $a+b \in QR$
- $a+c \in QR$
- \bullet $b+c \in QR$

We also need to check if any of the sums of the elements in each combination are $\equiv 0 \mod p$.

Finally, if the final array is empty \implies all combinations had 0 (or \equiv 0 mod p) \Longrightarrow the edge is divisible by p .

Note, if final array has combinations, then there exist combinations such that 0 isn't a part of it, so we cannot conclude that p is a divisor. (it can still be shown that p is a divisor in other ways, just not with modular arithmetic).

In the end we have a MATLAB program that we can plug in divisors and check if they do divide an edge.

In the end we have a MATLAB program that we can plug in divisors and check if they do divide an edge.

As I was checking and running larger primes past 100, my professor had the great idea of checking 7^2 .

 Ω

In the end we have a MATLAB program that we can plug in divisors and check if they do divide an edge.

As I was checking and running larger primes past 100, my professor had the great idea of checking 7^2 .

Lo and behold it works, an empty final array \implies all combinations had 0 (or \equiv 0 $\mod p$ \implies the edge is divisible by 7².

- We had run time issues for larger numbers, (namely: 11^2 & 7 $^3)$
- . We also looked out rulling out other primes, which is less impressive...

- We had run time issues for larger numbers, (namely: 11^2 & 7 $^3)$
- We also looked out rulling out other primes, which is less impressive...
	- If p is an odd prime, then $\left(\frac{p}{3}\right) \iff p \equiv \pm 1 \mod 12$
	- If ρ is an odd prime, then $\binom{\breve{p}}{2} \iff \rho \equiv \pm 1 \mod 8$
	- From these, 4 cases arrise:

- We had run time issues for larger numbers, (namely: 11^2 & 7 $^3)$
- We also looked out rulling out other primes, which is less impressive...
	- If p is an odd prime, then $\left(\frac{p}{3}\right) \iff p \equiv \pm 1 \mod 12$
	- If ρ is an odd prime, then $\binom{\breve{p}}{2} \iff \rho \equiv \pm 1 \mod 8$
	- From these, 4 cases arrise:

•
$$
p \equiv 1 \mod 12 \land p \equiv 1 \mod 8
$$

•
$$
p \equiv 1 \mod 12 \land p \equiv 7 \mod 8
$$

• $p \equiv 11 \mod 12 \land p \equiv 1 \mod 8$

•
$$
p \equiv 11 \mod 12 \land p \equiv 7 \mod 8
$$

- We had run time issues for larger numbers, (namely: 11^2 & 7 $^3)$
- We also looked out rulling out other primes, which is less impressive...
	- If p is an odd prime, then $\left(\frac{p}{3}\right) \iff p \equiv \pm 1 \mod 12$
	- If ρ is an odd prime, then $\binom{\breve{p}}{2} \iff \rho \equiv \pm 1 \mod 8$
	- From these, 4 cases arrise:

\n- •
$$
p \equiv 1 \mod 12 \land p \equiv 1 \mod 8
$$
\n- • $p \equiv 1 \mod 12 \land p \equiv 7 \mod 8$
\n- • $p \equiv 11 \mod 12 \land p \equiv 1 \mod 8$
\n- • $p \equiv 11 \mod 12 \land p \equiv 7 \mod 8$
\n- • Result: $\left(\frac{2.3}{p}\right) = 1 \iff p \equiv \pm 1 \mod 24$
\n

- We had run time issues for larger numbers, (namely: 11^2 & 7 $^3)$
- We also looked out rulling out other primes, which is less impressive...
	- If p is an odd prime, then $\left(\frac{p}{3}\right) \iff p \equiv \pm 1 \mod 12$
	- If ρ is an odd prime, then $\binom{\breve{p}}{2} \iff \rho \equiv \pm 1 \mod 8$
	- From these, 4 cases arrise:

\n- $$
p \equiv 1 \mod 12 \land p \equiv 1 \mod 8
$$
\n- $p \equiv 1 \mod 12 \land p \equiv 7 \mod 8$
\n- $p \equiv 11 \mod 12 \land p \equiv 1 \mod 9$
\n

•
$$
p \equiv 11 \mod 12 \land p \equiv 1 \mod 8
$$

- $p \equiv 11 \mod 12 \land p \equiv 7 \mod 8$
- Result: $\left(\frac{2,3}{p}\right) = 1 \iff p \equiv \pm 1 \mod 24$
- The reason why this is less impressive, is that it just means if you were to check the divisors $p \equiv 1 \mod 24$, you would know that they could never be a divisor of the perfect cuboid. Not as "cool" as finding divisors.

 Ω

References

- **Gfis.** (2015) Wiki. https://en.wikipedia.org/wiki/Euler_brick
- M. Kraitchik, M. "On certain Rational Cuboids", Scripta Math. 11, 317-326,1945.
- Thomas A. Plick, "A New Constraint on Perfect Cuboids," Integers, 17 (2017).
- **•** Tim S. Roberts, Some constraints on the existence of a perfect cuboid. (2009).