PDEs Ph.D. Qualifying Exam Temple University January 12, 2017

Part I. (Do 3 problems)

1. Solve the damped Burgers' equation

$$u u_x + u_y = -u$$
, for $x \in \mathbb{R}, y > 0$,
 $u(x, 0) = x$.

2. Let u(x, t) solve the heat equation

 $u_t = \Delta u, \text{ for } x \in \mathbb{R}^n, t > 0,$ u = f for t = 0,

with the usual growth condition to guarantee uniqueness in place. Show that

$$||u(\cdot,t)||_{L^p} \leq ||f||_{L^p}$$

for any $p \ge 1$ and all t > 0.

- 3. Show that if $f \in H^1(\Omega)$ for $\Omega \subset \mathbb{R}^1$, then f is Hölder continuous with exponent 1/2. Show that if \mathbb{R}^1 is replaced by \mathbb{R}^n , n > 1, then f need not even be continuous.
- 4. Let $f \in L^1(\mathbb{R}^n)$ and its Fourier transform $\hat{f}(x) = \int_{\mathbb{R}^n} f(y) e^{-2\pi i x \cdot y} dy$. If g(x) = |x| f(x) belongs to $L^1(\mathbb{R}^n)$, then prove that \hat{f} satisfies the Lipschitz estimate

$$\left|\hat{f}(x) - \hat{f}(y)\right| \le 2\pi ||g||_1 |x - y| \qquad \forall x, y \in \mathbb{R}^n.$$

Part II. (Do 2 problems)

1. Consider $u \in C^2(\Omega) \cap C(\overline{\Omega})$ solution to the boundary value problem

$$\Delta u = c \, u - |\nabla u|^2, \text{ in } \Omega,$$
$$u = 0, \text{ on } \partial \Omega,$$

where $\Omega \subset \mathbb{R}^n$ is a bounded domain. Show that if c(x) > 0 for all $x \in \Omega$, then $u \equiv 0$ in Ω .

2. Let $u = u(x, t) \in C^2([0, 1] \times [0, \infty))$ be a solution to

$$u_{tt} - u_{xx} = -\frac{u}{1+u^2}, \text{ for } 0 < x < 1, t > 0,$$

$$u_t(1,t) u_x(1,t) - u_t(0,t) u_x(0,t) = 0, \text{ for } t > 0.$$

(a) Find a function ϕ so that the energy

$$E(t) = \int_0^1 \left(u_t^2 + u_x^2 + \phi(u) \right) \, dx$$

is constant in time.

- (b) In addition, if u(0, t) = 0 for all t > 0, then conclude that there is a constant c > 0 so that $|u(x, t)| \le c x^{1/2}$ for all $x \in [0, 1]$ and t > 0.
- 3. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary, and let *u* solve the eigenvalue problem

$$-\Delta u = -u^3 + \lambda u \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega.$$

Here $u \not\equiv 0$ and $\lambda \in \mathbb{R}$.

Prove the following

(a)
$$\lambda = \frac{\int_{\Omega} |\nabla u|^2 dx + \int_{\Omega} u^4 dx}{\int_{\Omega} u^2 dx};$$

(b) there cannot exist a sequence of eigen-pairs (u_k, λ_k) such that $\lambda_k \to 0$.