PDEs Ph.D. Qualifying Exam Temple University January 8, 2019

Part I. (Do 3 problems)

1. Solve

$$-x u_x + u_y = (1 - x^2) u$$
$$u(0, y) = 3 e^y.$$

2. For $f \in L^1(\mathbb{R})$ recall that its Fourier transform $\mathcal{F}f(x) = \int_{\mathbb{R}} f(t) e^{-2\pi i x t} dt$. Let a > 0. Prove that $\mathcal{F}\left(e^{-a\pi |x|^2}\right)(\xi) = a^{-n/2}e^{-\pi |\xi|^2/a}$. Conclude that (* denotes convolution)

$$e^{-\pi|x|^2} * e^{-\pi|x|^2} = 2^{-n/2} e^{-\pi|x|^2/2}.$$

3. Let Ω be a smooth bounded domain in \mathbb{R}^n and let c(x) be a continuous positive function in $\overline{\Omega}$. Consider the boundary value problem

$$\frac{1}{c(x)^2} u_{tt} = \Delta_x u \quad \text{for } x \in \Omega, t > 0$$
$$u_t - \alpha(x) \frac{\partial u}{\partial v} = 0 \quad \text{for } x \in \partial\Omega \text{ and } t > 0,$$

 α is a continuous function in $\partial \Omega$. Let $E(t) = \frac{1}{2} \int_{\Omega} \left(\frac{1}{c(x)^2} u_t^2 + |\nabla_x u|^2 \right) dx$.

Prove that
$$\frac{dE}{dt} \ge 0$$
 if $\alpha(x) \ge 0$ for $x \in \partial\Omega$; and $\frac{dE}{dt} \le 0$ if $\alpha(x) \le 0$.

4. Let $b \in \mathbb{R}^n$, $c \in \mathbb{R}$, and let *u* be a solution to

$$u_t + b \cdot \nabla_x u + c \, u = \Delta_x u \quad \text{for } x \in \mathbb{R}^n \text{ and } t > 0$$
$$u(x, 0) = f(x) \quad \text{for } x \in \mathbb{R}^n.$$

Find constants $\alpha \in \mathbb{R}^n$ and $\beta \in \mathbb{R}$ such that $u(x, t) = e^{\alpha \cdot x + \beta t} v(x, t)$ with v satisfying the heat equation $v_t - \Delta_x v = 0$. Find v(x, 0).

Part II. (Do 2 problems)

- 1. Let $f, g \in W^{1,2}(\Omega)$. Prove that $fg \in W^{1,1}(\Omega)$ and D(fg) = fDg + gDf. HINT: from Meyers-Serrin theorem there exist $f_n, g_n \in C^{\infty}(\Omega) \cap W^{1,2}(\Omega)$ with $f_n \to f$ and $g_n \to g$ in $W^{1,2}(\Omega)$. Show that $f_ng_n \to fg$ in $L^1(\Omega)$ and $f_nDg_n + g_nDf_n \to fDg + gDf$ in $L^1(\Omega)$. Since f_n, g_n are smooth $D(f_ng_n) = f_nDg_n + g_nDf_n$, conclude the result.
- 2. Let $\Omega \subset \mathbb{R}^n$ with smooth boundary. Prove that the boundary value problem

$$\Delta u + \alpha(x) u = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

cannot have more than one smooth solution provided $\|\alpha\|_{L^{\infty}(\Omega)}$ is sufficiently small.

HINT: Use Poincaré's inequality $||u||_2 \le C_1 ||\nabla u||_2$ for all $u \in C_0^1(\Omega)$.

3. Let *u* be biharmonic in \mathbb{R}^n , i.e., $\Delta^2 u = \Delta(\Delta u) = 0$. Prove that *u* satisfies the following mean value property

$$\int_{|x|=r} u(x) \, d\sigma(x) = u(0) + \frac{r^2}{2n} \, \Delta u(0)$$

for all r > 0.

HINT: Δu is harmonic, then use the solid mean value property for harmonic functions, the divergence theorem and integrate the resulting identity from 0 to *r*.

ANSWER: Δu is harmonic, so from the solid mean value property

$$\begin{split} \Delta u(0) &= \frac{1}{|B_r(0)|} \int_{B_r(0)} \Delta u(x) \, dx \\ &= \frac{1}{|B_r(0)|} \int_{|x|=r} \frac{\partial u}{\partial v} \, d\sigma(x) \quad \text{from the divergence theorem} \\ &= \frac{1}{|B_r(0)|} \int_{|x|=r} \nabla u(x) \cdot \frac{x}{r} \, d\sigma(x) \\ &= \frac{1}{|B_r(0)|} \int_{|z|=1} \nabla u(rz) \cdot \frac{rz}{r} \, r^{n-1} d\sigma(z) \\ &= \frac{1}{|B_r(0)|} r^{n-1} \int_{|z|=1} \frac{d}{dr} (u(rz)) \, d\sigma(z) \\ &= \frac{1}{|B_r(0)|} r^{n-1} \frac{d}{dr} \left(\int_{|z|=1} u(rz) \, d\sigma(z) \right) \\ &= \frac{1}{|B_r(0)|} r^{n-1} \frac{d}{dr} \left(\frac{1}{r^{n-1}} \int_{|x|=r} u(x) \, d\sigma(x) \right) \\ &= \frac{\omega_{n-1} r^{n-1}}{|B_r(0)|} \frac{d}{dr} \left(\frac{1}{\omega_{n-1} r^{n-1}} \int_{|x|=r} u(x) \, d\sigma(x) \right) \\ &= \frac{\omega_{n-1} r^{n-1}}{|B_r(0)|} \frac{d}{dr} \left(\int_{|x|=r} u(x) \, d\sigma(x) \right) \\ &= \frac{n}{r} \frac{d}{dr} \left(\int_{|x|=r} u(x) \, d\sigma(x) \right), \end{split}$$

so we obtain

$$\frac{r}{n}\Delta u(0) = \frac{d}{dr} \left(\int_{|x|=r} u(x) \, d\sigma(x) \right).$$

Integrating the last identity between 0 and *r* yields

$$\frac{r^2}{2n}\Delta u(0) = \int_{|x|=r} u(x)\,d\sigma(x) - u(0).$$