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Part I. (Do 3 problems)

1. Solve

−x ux + uy = (1 − x2) u
u(0, y) = 3 ey.

2. For f ∈ L1(R) recall that its Fourier transform F f (x) =
∫
R

f (t) e−2πi x t dt.

Let a > 0. Prove that F
(
e−aπ|x|2

)
(ξ) = a−n/2e−π|ξ|2/a. Conclude that (* denotes convolution)

e−π|x|
2
∗ e−π|x|

2
= 2−n/2e−π|x|

2/2.

3. Let Ω be a smooth bounded domain in Rn and let c(x) be a continuous positive function
in Ω̄. Consider the boundary value problem

1
c(x)2 utt = ∆xu for x ∈ Ω, t > 0

ut − α(x)
∂u
∂ν

= 0 for x ∈ ∂Ω and t > 0,

α is a continuous function in ∂Ω. Let E(t) =
1
2

∫
Ω

(
1

c(x)2 u2
t + |∇xu|2

)
dx.

Prove that
dE
dt
≥ 0 if α(x) ≥ 0 for x ∈ ∂Ω; and

dE
dt
≤ 0 if α(x) ≤ 0.

4. Let b ∈ Rn, c ∈ R, and let u be a solution to

ut + b · ∇xu + c u = ∆xu for x ∈ Rn and t > 0
u(x, 0) = f (x) for x ∈ Rn.

Find constants α ∈ Rn and β ∈ R such that u(x, t) = eα·x+βt v(x, t) with v satisfying the heat
equation vt − ∆xv = 0. Find v(x, 0).



Part II. (Do 2 problems)

1. Let f , g ∈W1,2(Ω). Prove that f g ∈W1,1(Ω) and D( f g) = f Dg + gD f .

HINT: from Meyers-Serrin theorem there exist fn, gn ∈ C∞(Ω)∩W1,2(Ω) with fn → f and
gn → g in W1,2(Ω). Show that fngn → f g in L1(Ω) and fnDgn + gnD fn → f Dg + gD f in
L1(Ω). Since fn, gn are smooth D( fngn) = fnDgn + gnD fn, conclude the result.

2. Let Ω ⊂ Rn with smooth boundary. Prove that the boundary value problem

∆u + α(x) u = f in Ω

u = g on ∂Ω

cannot have more than one smooth solution provided ‖α‖L∞(Ω) is sufficiently small.

HINT: Use Poincaré’s inequality ‖u‖2 ≤ C1 ‖∇u‖2 for all u ∈ C1
0(Ω).

3. Let u be biharmonic in Rn, i.e., ∆2u = ∆(∆u) = 0. Prove that u satisfies the following
mean value property ?

|x|=r
u(x) dσ(x) = u(0) +

r2

2 n
∆u(0)

for all r > 0.

HINT: ∆u is harmonic, then use the solid mean value property for harmonic functions,
the divergence theorem and integrate the resulting identity from 0 to r.
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ANSWER: ∆u is harmonic, so from the solid mean value property

∆u(0) =
1
|Br(0)|

∫
Br(0)

∆u(x) dx

=
1
|Br(0)|

∫
|x|=r

∂u
∂ν

dσ(x) from the divergence theorem

=
1
|Br(0)|

∫
|x|=r
∇u(x) ·

x
r

dσ(x)

=
1
|Br(0)|

∫
|z|=1
∇u(r z) ·

r z
r

rn−1dσ(z)

=
1
|Br(0)|

rn−1
∫
|z|=1

d
dr

(u(r z)) dσ(z)

=
1
|Br(0)|

rn−1 d
dr

(∫
|z|=1

u(r z) dσ(z)
)

=
1
|Br(0)|

rn−1 d
dr

(
1

rn−1

∫
|x|=r

u(x) dσ(x)
)

=
ωn−1 rn−1

|Br(0)|
d
dr

(
1

ωn−1 rn−1

∫
|x|=r

u(x) dσ(x)
)

=
ωn−1 rn−1

|Br(0)|
d
dr

(?
|x|=r

u(x) dσ(x)
)

=
n
r

d
dr

(?
|x|=r

u(x) dσ(x)
)
,

so we obtain
r
n

∆u(0) =
d
dr

(?
|x|=r

u(x) dσ(x)
)
.

Integrating the last identity between 0 and r yields

r2

2 n
∆u(0) =

?
|x|=r

u(x) dσ(x) − u(0).

Page 3


