PDEs Ph.D. Qualifying Exam Temple University January 12, 2017

Part I. (Do 3 problems)

1. Solve the damped Burgers' equation

$$
u u_x + u_y = -u, \text{ for } x \in \mathbb{R}, y > 0,
$$

$$
u(x, 0) = x.
$$

2. Let $u(x, t)$ solve the heat equation

 $u_t = \Delta u$, for $x \in \mathbb{R}^n$, $t > 0$, $u = f$ for $t = 0$,

with the usual growth condition to guarantee uniqueness in place. Show that

$$
||u(\cdot,t)||_{L^p}\leq ||f||_{L^p}
$$

for any $p \ge 1$ and all $t > 0$.

- 3. Show that if $f \in H^1(\Omega)$ for $\Omega \subset \mathbb{R}^1$, then f is Hölder continuous with exponent 1/2. Show that if \mathbb{R}^1 is replaced by \mathbb{R}^n , $n > 1$, then *f* need not even be continuous.
- 4. Let $f \in L^1(\mathbb{R}^n)$ and its Fourier transform $\hat{f}(x) = \int_{\mathbb{R}^n} f(y) e^{-2\pi i x \cdot y} dy$. If $g(x) = |x| f(x)$ belongs to $L^1(\mathbb{R}^n)$, then prove that \hat{f} satisfies the Lipschitz estimate

$$
\left|\hat{f}(x)-\hat{f}(y)\right|\leq 2\,\pi\,\|g\|_1\,|x-y|\qquad\forall x,\,y\in\mathbb{R}^n.
$$

Part II. (Do 2 problems)

1. Consider *u* ∈ *C*²(Ω) ∩ *C*(\overline{Q}) solution to the boundary value problem

$$
\Delta u = c u - |\nabla u|^2, \text{ in } \Omega,
$$

$$
u = 0, \text{ on } \partial\Omega,
$$

where $\Omega \subset \mathbb{R}^n$ is a bounded domain. Show that if $c(x) > 0$ for all $x \in \Omega$, then $u \equiv 0$ in Ω .

2. Let $u = u(x, t) \in C^2([0, 1] \times [0, \infty))$ be a solution to

$$
u_{tt} - u_{xx} = -\frac{u}{1 + u^2}, \text{ for } 0 < x < 1, t > 0,
$$
\n
$$
u_t(1, t) \, u_x(1, t) - u_t(0, t) \, u_x(0, t) = 0, \text{ for } t > 0.
$$

(a) Find a function ϕ so that the energy

$$
E(t) = \int_0^1 (u_t^2 + u_x^2 + \phi(u)) \ dx
$$

is constant in time.

- (b) In addition, if $u(0, t) = 0$ for all $t > 0$, then conclude that there is a constant $c > 0$ so that $|u(x, t)| \le c x^{1/2}$ for all $x \in [0, 1]$ and $t > 0$.
- 3. Let Ω ⊂ R*ⁿ* be a bounded domain with smooth boundary, and let *u* solve the eigenvalue problem

$$
-\Delta u = -u^3 + \lambda u \quad \text{in } \Omega
$$

$$
u = 0 \quad \text{on } \partial\Omega.
$$

Here $u \not\equiv 0$ and $\lambda \in \mathbb{R}$.

Prove the following

(a)
$$
\lambda = \frac{\int_{\Omega} |\nabla u|^2 dx + \int_{\Omega} u^4 dx}{\int_{\Omega} u^2 dx};
$$

(b) there cannot exist a sequence of eigen-pairs (u_k, λ_k) such that $\lambda_k \to 0$.