PDEs Ph.D. Qualifying Exam Temple University January, 2015

Part I. (Do 3 problems)

1. Solve the initial value problem

$$x^2u_x + xy u_y = u^2$$
 $u(y^2, y) = 1.$

- 2. Compute the Fourier transform of $u(x) = x e^{-x^2}$.
- 3. Let Ω be a bounded domain in \mathbb{R}^n with a C^1 boundary and suppose u_1 and u_2 are two functions in $C^2(\overline{\Omega})$ that are solutions of

$$\Delta u_1 = \lambda_1 u_1, \Delta u_2 = \lambda_2 u_2$$
 in $\Omega, u_1 = u_2 = 0$ on $\partial \Omega$,

where λ_1 and λ_2 are two constants, $\lambda_1 \neq \lambda_2$. Show that $\int_{\Omega} u_1(x)u_2(x) dx = 0$.

- 4. Let *u* be harmonic in \mathbb{R}^n . Prove that
 - (a) $\Delta(u^2) \ge 0$ in \mathbb{R}^n ;
 - (b) if $\int_{\mathbb{R}^n} u(x)^2 dx < +\infty$, then $u \equiv 0$.

Part II. (Do 2 problems)

1. Let Ω be a bounded smooth domain in \mathbb{R}^n , c(x) continuous and strictly positive in $\overline{\Omega}$, and $\alpha(x) \ge 0$ continuous in $\partial \Omega$. Suppose u(x, t) is a smooth solution to

$$u_{tt} - c(x)^2 \Delta u = 0 \quad \text{in } \Omega \times [0, T]$$

$$u_t - \alpha(x) \partial_{\nu} u = 0 \quad \text{in } \partial \Omega \times [0, T].$$

Prove that the energy

$$E(t) = \frac{1}{2} \int_{\Omega} \left(\frac{1}{c(x)^2} u_t^2 + |Du|^2 \right) dx$$

satisfies $\frac{dE}{dt} \ge 0$ for $0 \le t \le T$. Here $\partial_{\nu} u$ denotes the outer normal derivative of u.

- 2. Suppose $\Omega \subset \mathbb{R}^n$ is a connected domain and $u \in W^{1,p}(\Omega)$, for some $1 \leq p < \infty$, with weak derivatives $\frac{\partial u}{\partial x_j} = 0$ for $1 \leq j \leq n$. Prove that u is constant in Ω .
- 3. Let u(x, t) be a solution to the heat equation $u_t \Delta u = 0$ in $\mathbb{R}^n \times (0, +\infty)$. Suppose that $\sup_{|x| < R} |u(x, t) A(x)| \to 0$ as $t \to +\infty$ for some function A(x). Prove that A is harmonic in |x| < R. HINT: prove that A is weakly harmonic in |x| < R, that is, $\int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx = 0$ for all $\phi \in C_0^{\infty}(|x| < R)$. Using the equation and the divergence theorem show first that $\int_{t_1}^{t_2} \int_{\mathbb{R}^n} u(x, t) \Delta \phi(x) dx = 0$
 - $\int_{\mathbb{R}^n} \phi(x) \left(u(x,t_2) u(x,t_1) \right) dx. \text{ Next write } \int_{t_1}^{t_2} \int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx dt = \int_{t_1}^{t_2} \int_{\mathbb{R}^n} \left(A(x) u(x,t) \right) \Delta \phi(x) dx dt + \int_{t_1}^{t_2} \int_{\mathbb{R}^n} u(x,t) \Delta \phi(x) dx dt.$