PDEs Ph.D. Qualifying Exam Temple University January, 2015

Part I. (Do 3 problems)

1. Solve the initial value problem

$$
x^2 u_x + xy u_y = u^2 \qquad u(y^2, y) = 1.
$$

- 2. Compute the Fourier transform of $u(x) = xe^{-x^2}$.
- 3. Let Ω be a bounded domain in \mathbb{R}^n with a C^1 boundary and suppose u_1 and u_2 are two functions in $C^2(\overline{\Omega})$ that are solutions of

 $\Delta u_1 = \lambda_1 u_1$, $\Delta u_2 = \lambda_2 u_2$ in Ω , $u_1 = u_2 = 0$ on $\partial \Omega$,

where λ_1 and λ_2 are two constants, $\lambda_1 \neq \lambda_2$. Show that $\int_{\Omega} u_1(x)u_2(x) dx = 0$.

- 4. Let *u* be harmonic in \mathbb{R}^n . Prove that
	- (a) $\Delta(u^2) \ge 0$ in \mathbb{R}^n ;
	- (b) if $\int_{\mathbb{R}^n} u(x)^2 dx < +\infty$, then $u \equiv 0$.

Part II. (Do 2 problems)

1. Let Ω be a bounded smooth domain in \mathbb{R}^n , $c(x)$ continuous and strictly positive in $\bar{\Omega}$, and $\alpha(x) \ge 0$ continuous in ∂Ω. Suppose *u*(*x*, *t*) is a smooth solution to

$$
u_{tt} - c(x)^2 \Delta u = 0 \quad \text{in } \Omega \times [0, T]
$$

$$
u_t - \alpha(x)\partial_v u = 0 \quad \text{in } \partial\Omega \times [0, T].
$$

Prove that the energy

$$
E(t) = \frac{1}{2} \int_{\Omega} \left(\frac{1}{c(x)^2} u_t^2 + |Du|^2 \right) dx
$$

satisfies $\frac{dE}{dt} \ge 0$ for $0 \le t \le T$. Here $\partial_{\nu}u$ denotes the outer normal derivative of *u*.

- 2. Suppose $\Omega \subset \mathbb{R}^n$ is a connected domain and $u \in W^{1,p}(\Omega)$, for some $1 \leq p < \infty$, with weak derivatives [∂]*^u* ∂*x^j* $= 0$ for $1 \le j \le n$. Prove that *u* is constant in Ω .
- 3. Let $u(x, t)$ be a solution to the heat equation $u_t \Delta u = 0$ in $\mathbb{R}^n \times (0, +\infty)$. Suppose that $\sup_{|x| < R} |u(x, t) A(x)$ \rightarrow 0 as $t \rightarrow +\infty$ for some function $A(x)$. Prove that *A* is harmonic in $|x|$ < *R*. HINT: prove that *A* is weakly harmonic in $|x| < R$, that is, $\int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx = 0$ for all $\phi \in C_0^{\infty}$ \int_{0}^{∞} (|x| <

R). Using the equation and the divergence theorem show first that $\int_{t_1}^{t_2}$ $\int_{\mathbb{R}^n} u(x, t) \, \Delta \phi(x) \, dx dt =$ $\int_{\mathbb{R}^n} \phi(x) \left(u(x, t_2) - u(x, t_1) \right) dx$. Next write $\int_{t_1}^{t_2}$ $\int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx dt = \int_{t_1}^{t_2}$ *t*1 $\int_{\mathbb{R}^n} (A(x) - u(x, t)) \Delta \phi(x) dx dt +$ \int_0^t *t*1 $\int_{\mathbb{R}^n} u(x, t) \, \Delta \phi(x) \, dx dt.$