PDEs Ph.D. Qualifying Exam Temple University January 16, 2014

Part I. (Do 3 problems)

1. Solve the initial value problem

$$-x u_x + y u_y = x u^2, \qquad u(s, 1) = e^{-s}$$

- 2. Let $f \in L^1(\mathbb{R}^n)$. Prove that the Fourier transform \hat{f} is uniformly continuous in \mathbb{R}^n .
- 3. Show that when n = 2, the function $u(x) = -\frac{1}{8\pi} |x|^2 \log |x|$ is a fundamental solution to the bi-harmonic operator $\Delta^2 = \Delta(\Delta)$. That is, show that

$$\varphi(0) = \int_{\mathbb{R}^2} u(x) \Delta^2 \varphi(x) \, dx,$$

for all functions φ smooth with compact support. HINT: show that $\Delta u = -\frac{1}{2\pi} (1 + \log |x|)$.

4. If $\alpha = (\alpha_1, \dots, \alpha_n)$ is a constant vector, prove that $u(x, t) = \exp(\pm i(\alpha \cdot x + \omega c t))$ solves the wave equation $u_{tt} - c^2 \Delta u = 0$ provided $|\alpha|^2 = \omega^2$. Here *c* and ω are real constants.

Part II. (Do 2 problems)

1. If $f \in W^{1,2}(\Omega)$ with $\Omega \subset \mathbb{R}^n$ open connected and Df = 0, then prove that f is constant in Ω (D denotes the gradient).

HINT: let ϕ be smooth, nonnegative, with support on the unit ball and integral one. Take $\phi_{\epsilon}(x) = \epsilon^{-n}\phi(x/\epsilon)$ and $f_{\epsilon} = f \star \phi_{\epsilon}$. Show first that f_{ϵ} is constant for each ϵ (constant depending on ϵ).

2. Let u(x, t) be a solution to the heat equation $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, +\infty)$. Suppose that $\sup_{|x| < R} |u(x, t) - A(x)| \to 0$ as $t \to +\infty$ for some function A(x). Prove that A is harmonic in |x| < R.

HINT: prove that *A* is weakly harmonic in |x| < R, that is, $\int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx = 0$ for all $\phi \in C_0^{\infty}(|x| < R)$

- *R*). Using the equation and the divergence theorem show first that $\int_{t_1}^{t_2} \int_{\mathbb{R}^n} u(x,t) \Delta \phi(x) dx dt = \int_{\mathbb{R}^n} \phi(x) (u(x,t_2) u(x,t_1)) dx$. Next write $\int_{t_1}^{t_2} \int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx dt = \int_{t_1}^{t_2} \int_{\mathbb{R}^n} (A(x) u(x,t)) \Delta \phi(x) dx dt + \int_{t_1}^{t_2} \int_{\mathbb{R}^n} u(x,t) \Delta \phi(x) dx dt$.
- 3. Suppose $u \in C^2(\overline{\Omega})$ is harmonic, with Ω a bounded and smooth connected domain; v denotes the outer unit normal to $\partial \Omega$.
 - (a) Prove that

$$\int_{\partial\Omega} u \, \frac{\partial u}{\partial v} \, d\sigma(x) \ge 0,$$

with strict inequality unless *u* is constant.

HINT: apply the divergence theorem to the field *uDu*.

(b) Deduce that the problem $\Delta u = f$ has at most one solution $u \in C^2(\overline{\Omega})$ satisfying $\frac{\partial u}{\partial v} + \alpha u = \beta$ on $\partial\Omega$, where $\alpha(x)$ and $\beta(x)$ are measurable functions in $\partial\Omega$, with $\alpha(x) > 0$ a.e.