PDEs Ph.D. Qualifying Exam Temple University January 16, 2014

Part I. (Do 3 problems)

1. Solve the initial value problem

$$
-x u_x + y u_y = x u^2, \qquad u(s, 1) = e^{-s}.
$$

- 2. Let *f* ∈ *L*¹(\mathbb{R}^n). Prove that the Fourier transform *f* is uniformly continuous in \mathbb{R}^n .
- 3. Show that when $n = 2$, the function $u(x) = -\frac{1}{2}$ $\frac{1}{8\pi}|x|^2 \log |x|$ is a fundamental solution to the bi-harmonic operator $\Delta^2 = \Delta(\Delta)$. That is, show that

$$
\varphi(0) = \int_{\mathbb{R}^2} u(x) \Delta^2 \varphi(x) \, dx,
$$

for all functions φ smooth with compact support. HINT: show that $\Delta u = -\frac{1}{2}$ $2\,\pi$ $(1 + \log |x|)$.

4. If $\alpha = (\alpha_1, \dots, \alpha_n)$ is a constant vector, prove that $u(x, t) = \exp(\pm i(\alpha \cdot x + \omega c t))$ solves the wave equation $u_{tt} - c^2 \Delta u = 0$ provided $|\alpha|^2 = \omega^2$. Here *c* and ω are real constants.

Part II. (Do 2 problems)

1. If *f* ∈ *W*^{1,2}(Ω) with $Ω ⊂ ℝⁿ$ open connected and $Df = 0$, then prove that *f* is constant in $Ω$ (*D* denotes the gradient).

HINT: let ϕ be smooth, nonnegative, with support on the unit ball and integral one. Take $\phi_{\epsilon}(x) = \epsilon^{-n}\phi(x/\epsilon)$ and $f_{\epsilon} = f \star \phi_{\epsilon}$. Show first that f_{ϵ} is constant for each ϵ (constant depending on ϵ).

2. Let $u(x, t)$ be a solution to the heat equation $u_t-\Delta u=0$ in $\mathbb{R}^n\times(0,+\infty)$. Suppose that $\sup_{|x|< R}|u(x, t)-$ *A*(*x*)| → 0 as *t* → +∞ for some function *A*(*x*). Prove that *A* is harmonic in $|x|$ < *R*.

HINT: prove that *A* is weakly harmonic in $|x| < R$, that is, $\int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx = 0$ for all $\phi \in C_0^{\infty}$ \int_{0}^{∞} (|x| <

- *R*). Using the equation and the divergence theorem show first that $\int_{t_1}^{t_2}$ $\int_{\mathbb{R}^n} u(x, t) \, \Delta \phi(x) \, dx dt =$ $\int_{\mathbb{R}^n} \phi(x) \left(u(x, t_2) - u(x, t_1) \right) dx$. Next write $\int_{t_1}^{t_2}$ $\int_{\mathbb{R}^n} A(x) \Delta \phi(x) dx dt = \int_{t_1}^{t_2}$ *t*1 $\int_{\mathbb{R}^n} (A(x) - u(x, t)) \Delta \phi(x) dx dt +$ \int_0^t *t*1 $\int_{\mathbb{R}^n} u(x, t) \, \Delta \phi(x) \, dx dt.$
- 3. Suppose $u \in C^2(\bar{\Omega})$ is harmonic, with Ω a bounded and smooth connected domain; v denotes the outer unit normal to $\partial Ω$.
	- (a) Prove that

$$
\int_{\partial\Omega} u \, \frac{\partial u}{\partial \nu} \, d\sigma(x) \ge 0,
$$

with strict inequality unless *u* is constant.

HINT: apply the divergence theorem to the field *uDu*.

(b) Deduce that the problem $\Delta u = f$ has at most one solution $u \in C^2(\bar{\Omega})$ satisfying $\frac{\partial u}{\partial v} + \alpha u = \beta$ on ∂Ω, where α(*x*) and β(*x*) are measurable functions in ∂Ω, with α(*x*) > 0 a.e.