PDEs Ph.D. Qualifying Exam Temple University January 17, 2013

Part I. (Do 3 problems)

1. Solve the Cauchy Problem

$$x \frac{\partial u}{\partial x} + (y+1) \frac{\partial u}{\partial y} = 3 u$$
$$u(x,0) = f(x)$$

for y > -1, where $f \in C^1(\mathbb{R})$.

- 2. The Fourier transform is defined by $\hat{f}(x) = \int_{\mathbb{R}^n} f(t) e^{-2\pi i x \cdot t} dt$. Suppose $f \in L^1(\mathbb{R}^n)$. Prove that
 - (a) \hat{f} is uniformly continuous in \mathbb{R}^n ; and
 - (b) $\lim_{|x|\to\infty} \hat{f}(x) = 0.$
- 3. Let $u(x) \ge 0$ and $u \in C^2(\overline{\Omega})$, with Ω a bounded smooth domain. If

$$\Delta u = u^2$$
 on Ω and $u(x) = 0$ on $\partial \Omega$,

then prove that $u \equiv 0$.

Hint: Multiply the equation by *u* and integrate.

4. Consider the wave equation with damping

$$u_{tt} - u_{xx} + u_t = 0, \ x \in \mathbb{R}, t > 0, \ u(x, 0) = f(x), \ u_t(x, 0) = g(x), x \in \mathbb{R},$$

with *g* having compact support. Let $E(t) = \int_{-\infty}^{\infty} (u_t^2 + u_x^2) dx$ be the energy of the solution at time *t*. Prove that E(t) is a non increasing function.

Part II. (Do 2 problems)

- 1. If $\Omega = B(0, 1)$ is the unit ball in \mathbb{R}^n and $u(x) = \frac{1}{|x|^{\alpha}}$, show that $u \in W^{1,p}(\Omega)$ if and only if $\alpha < \frac{n}{p} 1$.
- 2. Let $B = \{x \in \mathbb{R}^n : |x| < 1\}$. Show that if $u \in C^2(B) \cap C(\overline{B})$, u(x) = 0 for |x| = 1, and $|\Delta u| \le C$, where C > 0 is a constant, then

$$\frac{C}{2n}(|x|^2 - 1) \le u(x) \le -\frac{C}{2n}(|x|^2 - 1), \text{ for all } x \in B$$

Hint: Let $w(x) = \frac{C}{2n} (|x|^2 - 1)$. Show that $\Delta w = C$. Let v = u - w and show that $\Delta v \le 0$, i.e., v is super harmonic. By the minimum principle for super harmonic functions, $\min_{\bar{B}} v = \min_{\partial B} v$. Conclude the first inequality. To show the second inequality take $w(x) = -\frac{C}{2n} (|x|^2 - 1), u - w$ is sub harmonic and proceed similarly.

3. Using the field $(x_1, \dots, x_n, x_{n+1})$ and the divergence theorem, prove that the volume *V* of any bounded domain $D \subset \mathbb{R}^{n+1}$ for which the divergence theorem holds equals

$$V = \frac{1}{n+1} \int_{\partial D} |X - P| \cos(X - P, \nu) \, d\sigma(X),$$

where *P* is any fixed point in \mathbb{R}^{n+1} and (X - P, v) denotes the angle between X - P, and v is the outer unit normal to ∂D at the point *X*.

Conclude that if *C* is a cone in \mathbb{R}^{n+1} with sufficiently smooth base $\Omega \subset \mathbb{R}^n$ and height *h*, then the *n* + 1-dimensional volume of *C* equals

$$\frac{|\Omega| h}{n+1}$$

where $|\Omega|$ is the *n*-dimensional volume of the set Ω .

Hint: use the first part with *P*=vertex of the cone.