PDEs Ph.D. Qualifying Exam Temple University January 17, 2013

Part I. (Do 3 problems)

1. Solve the Cauchy Problem

$$
x\frac{\partial u}{\partial x} + (y+1)\frac{\partial u}{\partial y} = 3 u
$$

$$
u(x, 0) = f(x)
$$

for *y* > -1 , where $f \in C^1(\mathbb{R})$.

- 2. The Fourier transform is defined by $\hat{f}(x) = \int_{\mathbb{R}^n} f(t) e^{-2\pi i x \cdot t} dt$. Suppose $f \in L^1(\mathbb{R}^n)$. Prove that
	- (a) \hat{f} is uniformly continuous in \mathbb{R}^n ; and
	- (b) $\lim_{|x| \to \infty} \hat{f}(x) = 0.$
- 3. Let $u(x) \ge 0$ and $u \in C^2(\overline{\Omega})$, with Ω a bounded smooth domain. If

$$
\Delta u = u^2
$$
 on Ω and $u(x) = 0$ on $\partial\Omega$,

then prove that $u \equiv 0$.

Hint: Multiply the equation by *u* and integrate.

4. Consider the wave equation with damping

$$
u_{tt} - u_{xx} + u_t = 0, \ x \in \mathbb{R}, t > 0, \ u(x,0) = f(x), \ u_t(x,0) = g(x), x \in \mathbb{R},
$$

with *g* having compact support. Let *E*(*t*) = \int^{∞} −∞ $\left(u_t^2+u_x^2\right)$ *dx* be the energy of the solution at time *t*. Prove that *E*(*t*) is a non increasing function.

Part II. (Do 2 problems)

- 1. If $\Omega = B(0, 1)$ is the unit ball in \mathbb{R}^n and $u(x) = \frac{1}{|x|}$ $\frac{1}{|x|^{\alpha}}$, show that $u \in W^{1,p}(\Omega)$ if and only if $\alpha <$ *n* $\frac{n}{p} - 1.$
- 2. Let $B = \{x \in \mathbb{R}^n : |x| < 1\}$. Show that if $u \in C^2(B) \cap C(\overline{B})$, $u(x) = 0$ for $|x| = 1$, and $|\Delta u| \le C$, where $C > 0$ is a constant, then

$$
\frac{C}{2n} (|x|^2 - 1) \le u(x) \le -\frac{C}{2n} (|x|^2 - 1), \text{ for all } x \in B.
$$

Hint: Let *w*(*x*) = *C* 2*n* $(|x|^2 - 1)$. Show that ∆*w* = *C*. Let *v* = *u* − *w* and show that ∆*v* ≤ 0, i.e., v is super harmonic. By the minimum principle for super harmonic functions, $\min_{\bar{B}} v = \min_{\partial B} v$. Conclude the first inequality. To show the second inequality take $w(x) = -\frac{C}{2}$ 2*n* $(|x|^2 - 1)$, $u - w$ is sub harmonic and proceed similarly.

3. Using the field $(x_1, \dots, x_n, x_{n+1})$ and the divergence theorem, prove that the volume *V* of any bounded domain $D \subset \mathbb{R}^{n+1}$ for which the divergence theorem holds equals

$$
V = \frac{1}{n+1} \int_{\partial D} |X - P| \cos(X - P, v) d\sigma(X),
$$

where *P* is any fixed point in \mathbb{R}^{n+1} and $(X - P, v)$ denotes the angle between $X - P$, and v is the outer unit normal to ∂*D* at the point *X*.

Conclude that if C is a cone in \mathbb{R}^{n+1} with sufficiently smooth base $\Omega \subset \mathbb{R}^n$ and height *h*, then the $n + 1$ -dimensional volume of C equals

$$
\frac{|\Omega| \, h}{n+1}
$$

where $|\Omega|$ is the *n*-dimensional volume of the set Ω .

Hint: use the first part with *P*=vertex of the cone.