PDEs Ph.D. Qualifying Exam Temple University January 12, 2012

Part I. (Do 3 problems)

- 1. Let $\alpha \in \mathbb{R}$.
	- (a) If $f \in C^1(\mathbb{R})$, then show that the function $u(x, y) = f(x \alpha y)$ is a solution of the first order pde

$$
\alpha u_x + u_y = 0.
$$

(b) If $f \in C(\mathbb{R})$, then show that $u(x, y) = f(x - \alpha y)$ is a weak solution, that is, for every $\phi \in C^1_0$ $^{1}_{0}(\mathbb{R}^{2})$

$$
\iint \left(\alpha \phi_x(x, y) + \phi_y(x, y) \right) u(x, y) \, dx \, dy = 0.
$$

- 2. Let *f* ∈ *L*¹(\mathbb{R}^n). Prove that the Fourier transform \hat{f} is uniformly continuous in \mathbb{R}^n .
- 3. Let *u* be harmonic on a bounded domain Ω in \mathbb{R}^n , $u \in C(\Omega)$. Prove that

$$
|Du(x)| \le \frac{C_n}{\text{dist}(x, \partial \Omega)} \max_{\Omega} |u|
$$

for all $x \in \Omega$, where C_n is a constant depending only on the dimension *n*.

HINT: Either use the Poisson kernel for a ball or use the fact that derivatives of *u* are also harmonic, the mean value property and the divergence theorem.

4. Suppose u is a C^2 solution of the wave equation

$$
u_{tt} - u_{xx} = 0, \ x \in \mathbb{R}, \ t > 0, \ u(x,0) = f(x), \ u_t(x,0) = g(x).
$$

If $f(x) = 0 = g(x)$ on the interval $[-R, R]$, up to what time *t* can you guarantee that $u = 0$ at the center $x = 0$? Justify your answer.

Part II. (Do 2 problems)

- 1. Assume $F : \mathbb{R} \to \mathbb{R}$ is C^1 , with *F'* bounded. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain and $u \in W^{1,2}(\Omega)$. Show that $v(x) = F(u(x)) \in W^{1,2}(\Omega)$ and the weak derivatives $v_{x_i} = F'(u)u_{x_i}$ for $1 \leq i \leq n$.
- 2. Let $u(x, t)$ be a C^2 bounded solution of

$$
u_t(x,t) - u_{xx}(x,t) = 0, \ x \in \mathbb{R}, \ t > 0, \ u(x,0) = f(x)
$$

where $f \in C(\mathbb{R})$ satisfies:

$$
\lim_{x \to +\infty} f(x) = A, \ \lim_{x \to -\infty} f(x) = B
$$

for some constants *A* and *B*. Show that $\lim_{t\to\infty} u(x,t) =$ *A* + *B* 2 , for each $x \in \mathbb{R}$.

Hint: Use an integral representation for the solution *u*. Justify why the representation is valid.

3. Suppose $u \in C^2(\bar{\Omega})$ is harmonic and $\partial\Omega$ is smooth. Prove that

$$
\int_{\partial\Omega} u \, \frac{\partial u}{\partial \nu} \, d\sigma(x) \ge 0,
$$

with strict inequality unless *u* is constant.