Ph.D. Comprehensive Examination (Sample II) Partial Differential Equations

Part I. Do three of these problems.

I.1. Write a formula for the solution of the following initial-value problem

$$
\begin{cases} u_t + a \cdot Du + bu = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x), & x \in \mathbb{R}^n. \end{cases}
$$

Here $b \in \mathbb{R}$ and $a \in \mathbb{R}^n$ are constants and $g(x)$ is a continuous function.

I.2. Let $0 < R_1 < R_2, \Omega = \{x \in \mathbb{R}^n : R_1 < |x - x_0| < R_2\}$, and c_1, c_2 be real numbers. Find a harmonic function u on Ω such that $u = c_1$ on $|x - x_0| = R_1$ and $u = c_2$ on $|x - x_0| = R_2$.

I.3. Prove that the function $|x|^{-\alpha} \in W^{1,p}(B_1(0))$ if only if $\alpha < \frac{n-p}{p}$. Here $B_1(0)$ denotes the unit ball in \mathbb{R}^n centered at the origin.

I.4. Let

$$
f(x) = \begin{cases} e^{-ax} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}
$$

where $a > 0$. For $\xi \in \mathbb{R}$, compute

$$
\int_{-\infty}^{\infty} e^{ix\xi} f(x) \, dx.
$$

Part II. Do two of these problems.

II.1. Let $u \in C^2(\mathbb{R}^n)$ be a function of compact support. Prove that

$$
u(x) = \int_{\mathbb{R}^n} \Gamma(x - y) \, \Delta u(y) \, dy
$$

where Γ is the fundamental solution of the Laplace operator. Hint: Use a Green's formula.

II.2. Let $u \in C^2(\mathbb{R} \times [0, \infty))$ be a solution of the telegraph equation

$$
u_{tt} = c^2 u_{xx} - hu
$$

on $\mathbb{R} \times (0, \infty)$ where $c, h > 0$. Let $(x_0, t_0) \in \mathbb{R} \times (0, \infty)$ and assume that $u(x, 0) =$ $u_t(x, 0) = 0$ on the set $\{x : |x - x_0| \le ct_0\}$. Prove that $u(x, t) = 0$ on the triangle $\{(x,t): 0 \le t < t_0, |x - x_0| \le c(t_0 - t)\}.$

Hint: For $0 \le t < t_0$, consider the energy

$$
W(t) = \int_{x_0 - c(t_0 - t)}^{x_0 + c(t_0 - t)} (u_t^2 + c^2 u_x^2 + hu^2) dx.
$$

Observe that $W(0) = 0$ and $W(t) \geq 0$. Show that $W(t)$ is a decreasing function.

II.3. Let u be a harmonic function on a domain $\Omega \subseteq \mathbb{R}^n$, $u \in C(\overline{\Omega})$. Prove that

$$
|Du(x)| \le \frac{C_n}{\text{dist}(x, \partial\Omega)} \max_{\overline{\Omega}} |u|
$$

for all $x \in \Omega$, where C_n is a constant depending only on the dimension n.