Ph.D. Comprehensive Examination (Sample I) Partial Differential Equations

Part I. Do three of these problems.

I.1. Write a formula for a solution of the following initial-value problem

$$\begin{cases} u_t + u_x = u^2 & \text{in } \{(x,t) : t > 0\} \\ u(x,0) = g(x), & x \in \mathbb{R}. \end{cases}$$

I.2. Let Ω be a bounded domain in \mathbb{R}^n and $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy $\Delta u = u^3$ in Ω and u = 0 on $\partial \Omega$. Prove that $u \equiv 0$ in Ω .

I.3. Let n > 1. Show that the function $u(x) = \log \log \left(1 + \frac{1}{|x|}\right)$ belongs to $W^{1,n}(B_1(0))$ where $B_1(0)$ denotes the unit ball in \mathbb{R}^n centered at the origin.

I.4. Write a formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x), \quad x \in \mathbb{R}^n. \end{cases}$$

Here $c \in \mathbb{R}$ and $a \in \mathbb{R}^n$ and g(x) is a bounded continuous function.

Part II. Do two of these problems.

II.1. Let u be a harmonic function on \mathbb{R}^n . Prove that either u maps \mathbb{R}^n onto \mathbb{R} or it is constant.

II.2. Let $u \in C^2(\mathbb{R} \times [0, \infty)$ solve the wave equation:

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u(x, 0) = g(x), \ u_t(x, 0) = h(x), \ x \in \mathbb{R}. \end{cases}$$

Suppose g and h have compact support. The kinetic energy at time t is given by $k(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x,t) dx$ and the potential energy at time t is $p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x,t) dx$. Prove

- (1) k(t) + p(t) is constant in t.
- (2) There exists t_0 such that if $t \ge t_0$, k(t) = p(t).

II.3. Let $a \neq 0$. For $\xi \in \mathbb{R}$ compute the integral

$$\int_{-\infty}^{\infty} \frac{e^{ix\xi}}{x^2 + a^2} \, dx$$

Here $i = \sqrt{-1}$.