PDEs Ph.D. Qualifying Exam Temple University August 19, 2019

Part I. (Do 3 problems)

1. Solve

$$
u_x + x^2 y u_y = -u
$$

$$
u(0, y) = y^2.
$$

- 2. Suppose $f \in L^1(\mathbb{R}) \cap C^2(\mathbb{R})$ with $f'' \in L^1(\mathbb{R})$. Prove that $x^2 \hat{f}(x) \to 0$ as $|x| \to \infty$.
- 3. Consider the biharmonic operator $\Delta^2 u = \Delta(\Delta u)$ in a smooth bounded domain $\Omega \subset \mathbb{R}^n$. Prove that Δ^2 is self-adjoint, that is,

$$
\int_{\Omega} u \, \Delta^2 v \, dx = \int_{\Omega} v \, \Delta^2 u \, dx
$$

for all $u, v \in C^4(\bar{\Omega})$ with $u = v = 0$ and $\Delta u = \Delta v = 0$ on $\partial \Omega$.

4. Let *u* be harmonic on a bounded domain Ω in \mathbb{R}^n , $u \in C(\overline{\Omega})$. Prove that

$$
|Du(x)| \le \frac{C_n}{\text{dist}(x, \partial \Omega)} \max_{\Omega} |u|
$$

for all $x \in \Omega$, where C_n is a constant depending only on the dimension *n*.

Part II. (Do 2 problems)

- 1. Assume $F: \mathbb{R} \to \mathbb{R}$ is C^1 , with F' bounded. Suppose $\Omega \subset \mathbb{R}^n$ is a smooth bounded domain and $u \in W^{1,2}(\Omega)$. Prove that $v(x) = F(u(x)) \in W^{1,2}(\Omega)$ and the weak derivatives $v_{x_i} = F'(u)u_{x_i}$ for $1 \le i \le n$.
- 2. Let Ω be a bounded domain in R*ⁿ* . Suppose *w* ∈ *C* 2 (Ω)∩*C*(Ω) satisfies ∆*w* = *C*¹ in Ω and $w = 0$ on $\partial\Omega$ with C_1 a real constant.

If $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies $|\Delta u| \le C_1$ in Ω and $u = 0$ on $\partial\Omega$, then prove that

$$
w(x) \le u(x) \le -w(x)
$$
, for all $x \in \overline{\Omega}$.

3. Let Ω ⊆ R*ⁿ* be a smooth bounded domain. Let *u*(*x*, *t*) be a smooth solution to

$$
u_{tt} - \Delta u + u^3 = 0 \text{ for } (x, t) \in \Omega \times [0, T]
$$

$$
u(x, t) = 0 \text{ for } (x, t) \in \partial\Omega \times [0, T],
$$

and set $E(t) = \int_{\Omega}$ $(u_t(x, t)^2 + |\nabla_x u(x, t)|^2) dx$.

- (a) Prove that $\frac{dE}{dt}(t) = -\frac{1}{2}$ 2 $\left(\int_{\Omega} u(x, t)^{4} dx\right)_{t}$ for $0 \le t \le T$.
- (b) Conclude that if $u(x, 0) = u_t(x, 0) = 0$ for $x \in \Omega$, then $u \equiv 0$.