PDEs Ph.D. Qualifying Exam Temple University August 24, 2017

Part I. (Do 3 problems)

1. Solve

$$
u_x + x^2 y u_y = -u
$$

$$
u(0, y) = y^2.
$$

2. For $f \in L^1(\mathbb{R})$ recall that its Fourier transform $\hat{f}(x) = \int_{\mathbb{R}} f(t) e^{-2\pi i x t} dt$. Consider

$$
f(t) = \begin{cases} \frac{e^{2\pi i \alpha t}}{y} & \text{for } |t| \le y \\ 0 & \text{for } |t| > y \end{cases}
$$

where $\alpha \in \mathbb{R}$ and $y > 0$. Calculate the Fourier transform \hat{f} and use it to calculate the L^2 norm of the function $\frac{\sin t}{t}$.

3. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Prove that the solution $u \in C^4(\bar{\Omega})$ to the bi-harmonic equation

$$
\Delta^2 u = 0 \qquad \text{in } \Omega
$$

$$
u = \Delta u = 0 \qquad \text{on } \partial\Omega
$$

is unique.

4. Let Ω ⊂ \mathbb{R}^n be a bounded smooth domain and let $\gamma \in C^1(\bar{\Omega})$ be a real valued function. Given $f \in C(\partial\Omega)$, let $u \in C^2(\Omega) \cap C^1(\partial\Omega)$ be the solution to the problem

$$
\operatorname{div}(\gamma(x)\nabla u(x)) = 0 \qquad \text{in } \Omega
$$

$$
u = f \qquad \text{on } \partial\Omega,
$$

where div denotes the divergence. This defines a map Λ : $C(\partial\Omega) \to C(\partial\Omega)$ by

$$
\Lambda(f)(x) = \gamma(x) \frac{\partial u}{\partial \eta}(x)
$$

where $\frac{\partial u}{\partial \eta}$ denotes the normal derivative of *u*. Prove that

$$
\int_{\partial\Omega} f(x) \,\Lambda(g)(x) \,d\sigma(x) = \int_{\partial\Omega} g(x) \,\Lambda(f)(x) \,d\sigma(x),
$$

for all $f, g \in C(\partial \Omega)$.

HINT: if *v* is the solution with data *g*, use the divergence theorem with the fields $v \gamma \nabla u$ and $u \gamma \nabla v$, and compare the integrals obtained.

Part II. (Do 2 problems)

1. Let *f*, *g* ∈ *W*^{1,2}(Ω). Prove that *f g* ∈ *W*^{1,1}(Ω) and *D*(*f g*) = *fDg* + *gDf*.

HINT: from Meyers-Serrin theorem there exist f_n , $g_n \in C^{\infty}(\Omega) \cap W^{1,2}(\Omega)$ with $f_n \to f$ and $g_n \to g$ in $W^{1,2}(\Omega)$. Show that $f_n g_n \to fg$ in $L^1(\Omega)$ and $f_n Dg_n + g_n Df_n \to f Dg + g Df$ in $L^1(\Omega)$. Since f_n , g_n are smooth $D(f_n g_n) = f_n Dg_n + g_n Df_n$, conclude the result.

2. Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain and let $\epsilon > 0$. Let $u \in C^2(\Omega \times (0, T))$ solving

$$
\begin{cases} \epsilon^2 u_{tt} + u_t = \Delta_x u & \text{in } \Omega \times (0, T) \\ u(x, t) = 0 & \text{for } x \in \partial \Omega \text{ and } t > 0. \end{cases}
$$
 (1)

Consider

$$
E(t) = \int_{\Omega} \left(\epsilon^2 u_t^2 + |\nabla_x u|^2 \right) dx.
$$

Prove that

- (a) *E*(*t*) is non increasing
- (b) Let $f = f(x) \in C(\overline{\Omega})$, and $\alpha < 1$. If *u* satisfies (1) with $u(x, 0) = 0$ and $u_t(x, 0) = \epsilon^{-\alpha} f(x)$ for $x \in \Omega$, then deduce from (a) that

$$
\int_{\Omega} |\nabla_x u(x,t)|^2 dx \to 0
$$

as $\epsilon \to 0$ uniformly for $0 \le t \le T$.

3. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain and let $\alpha = (\alpha_1, \dots, \alpha_n)$ be a constant vector. Prove that if $u \in C^2(\bar{\Omega})$ satisfies

$$
\Delta u + \alpha \cdot \nabla u - u^3 = 0 \quad \text{in } \Omega
$$

$$
u = 0 \quad \text{on } \partial \Omega,
$$

then $u \equiv 0$ in Ω .