PDEs Ph.D. Qualifying Exam Temple University August 25, 2016

Part I. (Do 3 problems)

1. Solve

$$
\begin{cases} \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = u \\ u(1, y) = h(y) \end{cases}
$$

where $h \in C^1(\mathbb{R})$.

2. Let $k \in \mathbb{R}$ and let

$$
\Gamma(x) = \frac{e^{ik|x|}}{|x|} \qquad x \in \mathbb{R}^3, x \neq 0.
$$

Prove that Γ satisfies the Helmholtz equation $\Delta \Gamma + k^2 \Gamma = 0$ for $x \neq 0$.

3. Let $f \in L^1(\mathbb{R}^n)$ and its Fourier transform $\hat{f}(x) = \int_{\mathbb{R}^n} f(y) e^{-2\pi i x \cdot y} dy$. If $g(x) = |x| f(x)$ belongs to $L^1(\mathbb{R}^n)$, then prove that \hat{f} satisfies the Lipschitz estimate

$$
\left|\hat{f}(x)-\hat{f}(y)\right|\leq 2\,\pi\,\|g\|_1\,|x-y| \qquad \forall x,y\in\mathbb{R}^n.
$$

4. Let *F*, *G* : $\mathbb{R} \to \mathbb{R}$ be continuous and let $w(\xi, \eta) = F(\xi) + G(\eta)$. Prove that *w* is a generalized solution to the equation $w_{\xi\eta} = 0$, that is,

$$
\int_{\mathbb{R}^2} w(\xi, \eta) \, \phi_{\xi \eta}(\xi, \eta) \, d\xi d\eta = 0 \qquad \forall \phi \in C_0^2(\mathbb{R}^2).
$$

Conclude that $u(x, t) = F(x + ct) + G(x - ct)$ is a generalized solution to the wave equation $\Box u =$ $u_{tt} - c^2 u_{xx} = 0$, that is, $\int_{\mathbb{R}^2} u(x, t) \Box \phi(x, t) dx dt = 0$ for all $\phi \in C_0^2$ $_{0}^{2}(\mathbb{R}^{2}).$

Part II. (Do 2 problems)

1. Let $u(x, t)$ be a C^2 bounded solution of

$$
u_t(x,t) - u_{xx}(x,t) = 0, \ x \in \mathbb{R}, \ t > 0, \ u(x,0) = f(x)
$$

where $f \in C(\mathbb{R})$ satisfies:

$$
\lim_{x \to +\infty} f(x) = A, \ \lim_{x \to -\infty} f(x) = B
$$

for some constants *A* and *B*. Show that $\lim_{t \to \infty} u(x, t) = \frac{A+B}{2}$ $\frac{+B}{2}$, for each $x \in \mathbb{R}$.

Hint: Use an integral representation for the solution u . Justify why the representation is valid.

- 2. If $f \in W^{1,2}(\Omega)$ with $\Omega \subset \mathbb{R}^n$ connected and $Df = 0$, then prove that f is constant in Ω .
- 3. Let *B* be a ball in \mathbb{R}^n , $f \in C(\partial B)$, and the boundary value problem

$$
\begin{cases} \Delta u & = 1 \text{ in } B \\ \frac{\partial u}{\partial v} & = f \text{ on } \partial B. \end{cases}
$$

Prove that

- 1. if *u*₁, *u*₂ ∈ *C*²(\bar{B}) solve the boundary value problem, then *u*₁ − *u*₂ is constant in *B*;
- 2. if there is a solution $u \in C^2(\bar{B})$ to the boundary value problem, then $\int_{\partial B} f(x) d\sigma(x) = |B|$.