Real Analysis Ph.D. Qualifying Exam Temple University January 14, 2011

Part I. (Select 3 questions.)

1. Let *v* be any nonnegative function defined in all \mathbf{R}^n and for each integer j > 0, let B_j denote the ball with center 0 and radius *j*. Prove that

$$\inf_{x\in B_j} v(x) \to \inf_{x\in \mathbf{R}^n} v(x)$$

as $j \to \infty$.

- 2. If $\sum_{k=1}^{n} k a_k = \frac{n+1}{n+2}$ for $n = 1, 2, \cdots$, then prove that the series $\sum_{k=1}^{\infty} a_k$ converges.
- 3. Prove that

$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(nx)}{1 + n^2 x^3} \, dx = 0.$$

- 4. Let $f_n(x) = \cos\left(\sqrt{x + 4\pi^2 n^2}\right)$ with $0 \le x < +\infty$. Prove that
 - (a) f_n are equicontinuous in $[0, +\infty)$;
 - (b) f_n are uniformly bounded;
 - (c) $f_n(x) \to 1$ as $n \to \infty$ for each $x \in [0, +\infty)$;
 - (d) there is no subsequence of f_n that converges uniformly to 1 in $[0, +\infty)$. HINT: if $\sup_{x \in [0, +\infty)} |f_{n_j}(x) - 1| \to 0$ as $j \to \infty$ for a subsequence n_j , then given n_j pick $y_j = ((2n_j + 1)^2 - 4n_j^2)\pi^2$ and notice that $f_{n_j}(y_j) = -1$ contradicting the uniform convergence.
 - (e) explain why this does not contradict Arzelá-Ascoli's theorem.

Part II. (Select 2 questions.)

- 1. Let f_k be a sequence of nonnegative measurable functions in \mathbb{R}^n such that $f_k \to f$ in measure. Prove that $\int_{\mathbb{R}^n} f(x) dx \le \liminf_{k \to \infty} \int_{\mathbb{R}^n} f_k(x) dx$.
- 2. Let $f_k \to f$ in $L^1(\mathbb{R}^n)$. Prove that
 - (a) $f_k \rightarrow f$ in measure;

(b)
$$\forall \epsilon > 0 \exists t \ge 0$$
 such that $\int_{\{x: |f_k(x)| \ge t\}} |f_k(x)| dx < \epsilon \forall k;$
(c) $\forall \epsilon > 0 \exists E \subset \mathbf{R}^n$ measurable such that $\int_{\mathbf{R}^n \setminus E} |f_k(x)| dx < \epsilon \forall k.$

3. We say that the sets $A, B \subset \mathbb{R}^n$ are congruent if A = z + B for some $z \in \mathbb{R}^n$.

Let $E \subset \mathbf{R}^n$ be measurable such that $0 < |E| < +\infty$. Suppose that there exists a sequence of disjoint sets $\{E_i\}_{i=1}^{\infty}$ such that E_i and E_j are congruent for all i, j, and $E = \bigcup_{j=1}^{\infty} E_j$.

Prove that all the E_i 's are non-measurable.