Real Analysis Ph.D. Qualifying Exam Temple University January 15, 2010

Part I. (Select 3 questions.)

1. Let $f : [a, b] \rightarrow \mathbf{R}$ be a bounded function and set

 $M = \sup_{[a,b]} f(x), \quad m = \inf_{[a,b]} f(x), \quad M^* = \sup_{[a,b]} |f(x)|, \quad m^* = \inf_{[a,b]} |f(x)|.$

Prove that $M^* - m^* \le M - m$.

- 2. Let $f_n(x) = \frac{n^{3/2}x}{1 + n^2x^2}$ for $0 \le x < +\infty$. Prove that
 - (a) $f_n(x) \to 0$ as $n \to \infty$ for each $x \in [0, +\infty)$.
 - (b) f_n does not converge uniformly in $[0, +\infty)$.
 - (c) $f_n \to 0$ in measure as $n \to \infty$ in $[0, +\infty)$.
- 3. Show that the series

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k+|x|}$$

converges for each $x \in \mathbf{R}$ and the sum defines a Lipschitz function.

4. For a given set $E \subset \mathbb{R}^n$ consider the open set $O_k = \{x : \text{dist}(x, E) < 1/k\}$. Prove that $|E| = \lim_{k \to \infty} |O_k|$ for *E* compact. Prove that this may be false for *E* closed and unbounded.

Part II. (Select 2 questions.)

- 1. Let $1 \le p < \infty$ and $f_n, f \in L^p(E)$ with $||f_n f||_p \to 0$ as $n \to \infty$. Prove that
 - (a) $\forall \epsilon > 0 \exists n_0 \text{ and } A \subset E \text{ measurable with } |A| < \infty \text{ such that } \int_{E \setminus A} |f_n(x)|^p dx \le \epsilon \text{ for all } n \ge n_0; \text{ and }$

(b)
$$\forall \epsilon > 0 \exists n_0, \delta > 0$$
 such that if $|F| < \delta$, then $\int_F |f_n(x)|^p dx \le \epsilon$ for all $n \ge n_0$.

2. If $|f_k| \le g$ a.e. with g integrable in E, and $f_k \to f$ in measure in E, then prove that

$$\int_E f(x)\,dx = \lim_{k\to\infty}\int_E f_k(x)\,dx.$$

3. Prove that if E_k is a sequence of measurable sets in \mathbb{R}^n with $\sum_{k=1}^{\infty} |E_k| < \infty$, then $|\limsup E_k| = 0$.