PART I (select three questions)

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be $C^n(\mathbb{R})$ for some $n \ge 0$. Prove that if $f^{(k)}(0) = 0$, for all $0 \le k \le n$, then $\frac{f^{(k)}(x)}{|x|^{n-k}} \to 0$ as $x \to 0$, for all $0 \le k \le n$.
- 2. Prove that on *C*[0, 1] the norms $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$ and $||f||_1 = \int_0^1 |f(x)| dx$ are not equivalent.
- 3. Let $f_n : \mathbb{R} \to \mathbb{R}$ be continuously differentiable functions. Suppose that f'_n converges uniformly to a function g in \mathbb{R} , and $f_n(0)$ converges as $n \to \infty$. Prove that $f_n(x)$ converges for each $x \in \mathbb{R}$.
- 4. Let $f_n : E \to \mathbb{R}$ be a sequence of measurable functions. Prove that the set

$$\{x \in E : \lim_{n \to \infty} f_n(x) \text{ exists}\}$$

is measurable.

PART II (select two questions)

1. Let $f \in L^1(0, +\infty)$ be nonnegative. Prove that

$$\frac{1}{n} \int_0^n x f(x) \, dx \to 0, \qquad \text{as } n \to \infty.$$

Hint: Write $\frac{1}{n} \int_0^n x f(x) dx = \int_0^a \frac{x}{n} f(x) dx + \int_a^n \frac{x}{n} f(x) dx$, and pick *a* sufficiently large.

2. Let $f_n(x) = n \sin\left(\frac{x}{n}\right)$. Prove that:

(a) f_n converges uniformly on any finite interval. Hint: $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ for all x.

- (b) f_n does not converge uniformly on \mathbb{R} .
- (c) f_n does not converge in measure on \mathbb{R} . Hint: the interval $(n\pi, (n+1)\pi)$ is contained in the set $|f_n(x) x| > \epsilon$.
- 3. Let r_n be the sequence of all rational numbers and

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{1}{|x - r_n|^{1/2}}.$$

Prove that

1.
$$\int_{a}^{b} f(x) dx < \infty,$$

2.
$$\int_{a}^{b} f(x)^{2} dx = +\infty,$$

for all a < b.