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All functions on Rd are assumed Lebesgue measurable and all integrals are against Lebesgue
measure. Justify your answers.

Part I. (Select 3 questions.)

1. Let fn(x) =
1
n

e−n2 x2
for x ∈ R. Prove that

1. fn converges to 0 uniformly in R;
2. f ′n does not converge uniformly on any interval containing 0.

2. Let fn(x) = n3/2xe−n2 x2
for −1 ≤ x ≤ 1. Prove that

1. fn converges to zero pointwise in [−1, 1];

2.
∫ 1

−1
| fn(x)|2 dx 6→ 0.

3. Let fn(x) = sin
√

x + 4 n2 π2 on [0,+∞). Prove that

1. fn is equicontinuous on [0,+∞).
2. fn is uniformly bounded.
3. fn → 0 pointwise on [0,+∞).
4. There is no subsequence of fn that converges to 0 uniformly.
5. Compare with Arzelà-Ascoli.

4. Show that the series
∞∑

k=1

(−1)k

k + |x|

converges for each x ∈ R and the sum is a Lipschitz function.

5. Let f (x) = x2 sin(1/x2) for x ∈ [−1, 1], x , 0, and f (0) = 0. Show that f is differentiable on
[−1, 1] but f ′ is unbounded on [−1, 1].

Part II. (Select 2 questions.)
1. If | fk| ≤ g a.e. with g integrable in E, and fk → f in measure in E, then prove that∫

E
f (x) dx = lim

k→∞

∫
E

fk(x) dx.

2. Let {E j}
∞
j=1 be a sequence of measurable sets in Rn such that |E j ∩ Ei| = 0 for j , i. Prove that

|

∞⋃
j=1

E j| =

∞∑
j=1

|E j|.

3. Suppose f : Rn → R is Lipschitz, i.e., there exists K > 0 such that | f (x) − f (y)| ≤ K|x − y| for all
x, y ∈ Rn. Prove that if N is a set of measure zero, then f (N) has measure zero.


