Mathematics Real Analysis Ph.D. Qualifying Exam Temple University January 18, 2008

All functions on \mathbf{R}^d are assumed Lebesgue measurable and all integrals are against Lebesgue measure. Justify your answers.

Part I. (Select 3 questions.)

- 1. Let $f_n(x) = \frac{1}{n}e^{-n^2x^2}$ for $x \in \mathbf{R}$. Prove that
 - 1. f_n converges to 0 uniformly in **R**;
 - 2. f'_n does not converge uniformly on any interval containing 0.
- 2. Let $f_n(x) = n^{3/2} x e^{-n^2 x^2}$ for $-1 \le x \le 1$. Prove that
 - 1. f_n converges to zero pointwise in [-1, 1];
 - 2. $\int_{-1}^{1} |f_n(x)|^2 dx \not\to 0.$
- 3. Let $f_n(x) = \sin \sqrt{x + 4n^2 \pi^2}$ on $[0, +\infty)$. Prove that
 - 1. f_n is equicontinuous on $[0, +\infty)$.
 - 2. f_n is uniformly bounded.
 - 3. $f_n \to 0$ pointwise on $[0, +\infty)$.
 - 4. There is no subsequence of f_n that converges to 0 uniformly.
 - 5. Compare with Arzelà-Ascoli.
- 4. Show that the series

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k+|x|}$$

converges for each $x \in \mathbf{R}$ and the sum is a Lipschitz function.

5. Let $f(x) = x^2 \sin(1/x^2)$ for $x \in [-1, 1]$, $x \neq 0$, and f(0) = 0. Show that f is differentiable on [-1, 1] but f' is unbounded on [-1, 1].

Part II. (Select 2 questions.)

1. If $|f_k| \leq g$ a.e. with g integrable in E, and $f_k \rightarrow f$ in measure in E, then prove that

$$\int_E f(x) \, dx = \lim_{k \to \infty} \int_E f_k(x) \, dx.$$

2. Let $\{E_j\}_{j=1}^{\infty}$ be a sequence of measurable sets in \mathbb{R}^n such that $|E_j \cap E_i| = 0$ for $j \neq i$. Prove that

$$|\bigcup_{j=1}^{\infty} E_j| = \sum_{j=1}^{\infty} |E_j|.$$

3. Suppose $f : \mathbf{R}^n \to \mathbf{R}$ is Lipschitz, i.e., there exists K > 0 such that $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in \mathbf{R}^n$. Prove that if N is a set of measure zero, then f(N) has measure zero.