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All functions on Rd are assumed Lebesgue measurable and all integrals are against Lebesgue measure.
You may not use or refer to the Riemann integral in any of your answers; everything must be justified within
the context of the Lebesgue theorems (MCT, DCT, LDT, . . . ).

Part I. (Select 3 questions.)

1. We say f : R → R is superlinear if

lim
x→±∞

f(x)
|x| = +∞.

Show that f superlinear and differentiable implies f ′(R) = R.

2. Given a0 > b0 > 0, let

an+1 =
an + bn

2
, bn+1 =

√
anbn, n ≥ 0.

Show that (an) is decreasing, (bn) is increasing, and both sequences converge to the same limit.

3. Use the geometric series to show that
∞∑

n=1

nk

2n

is an integer for k = 1, 2, 3, . . ..

4. Let C ⊂ [0, 1] be the set of reals whose decimal expansion digits are zero or odd. Show that

C + C = {x + y : x, y ∈ C} = [0, 2].

(If x + y = z, look at the decimal expansions of x, y, z as geometric series in powers of 1/10.)

Part II. (Select 2 questions.)

1. Define the Lebesgue measure |A| of a set A ⊂ Rd. Show that, if |A| > 0 and ε > 0, there is a product
of intervals Q = I1 × I2 × . . .× Id satisfying

|Q ∩A| > (1− ε)|Q|.

2. Let f(x) = x2 − 2. By considering the minimum of n2|f(m/n)| over all naturals n,m ≥ 1, show that
∣∣∣
√

2− m

n

∣∣∣ ≥ 1
(2
√

2 + 1)n2
, n, m ≥ 1.
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