Mathematics Real Analysis Ph.D. Qualifying Exam Friday, January 14, 2006

All functions on \mathbf{R}^d are assumed Lebesgue measurable, all integrals are against Lebesgue measure, and $L^p = L^p(\mathbf{R}^d)$. You may not use or refer to the Riemann integral in any of your answers.

Part I. (Select 3 questions.)

- 1. Let f be a nonnegative measurable function defined on a measurable set E . Show that there exist a sequence (f_n) of simple measurable functions that increases pointwise to f as $n \to \infty$.
- 2. Let

$$
F(y) = \int_{-\infty}^{\infty} e^{-x^2} \cos(2xy) dx, \quad y \in \mathbf{R}.
$$

Show that F satisfies the differential equation

$$
F'(y) + 2yF(y) = 0.
$$

Solve for F and justify all the steps.

- 3. Let $f_n \to f$ in L^p , $1 \leq p < \infty$, and let (g_n) be a sequence of measurable functions such that $|g_n| \leq M$ ∞ , for all *n*, and $g_n \to g$ a.e. Show that $g_n f_n \to gf$ in L^p .
- 4. Let E be a measurable subset of \mathbf{R}^d . Let f_n and f be measurable functions defined on E. Suppose that f_n and f are finite a.e., for all n.
	- (a) Suppose the Lebesgue measure $|E| < \infty$. Show that if $f_n \to f$, a.e., as $n \to \infty$, then $f_n \to f$, in measure, as $n \to \infty$.
	- (b) Give a counter example if the condition $|E| < \infty$ in (a) is omitted.

Part II. (Select 2 questions.)

- 1. Let B be the class of all Borel sets in **R**. A function $f : \mathbf{R} \to \mathbf{R}$ is said to be Borel measurable if ${f > \alpha} \in \mathcal{B}$, for all $\alpha \in \mathbf{R}$.
	- (a) Show that f is Borel measurable if and only if $f^{-1}(B) \in \mathcal{B}$, for all $B \in \mathcal{B}$.
	- (b) Show that if f and g are Borel measurable then $f \circ g$ is Borel measurable.
	- (c) Show that a continuous function is Borel measurable.
- 2. Let (a_n) be a positive sequence and let $F(t) = \sum_{n=1}^{\infty} e^{-tn} a_n, t \ge 0$.
	- (a) Suppose $\sum_{n=1}^{\infty} na_n < \infty$. Show that the right-hand derivative

$$
F'_{+}(0) = \lim_{t \to 0+} \frac{F(t) - F(0)}{t}
$$

exists and is finite.

- (b) Conversely, suppose that $F(t)$ is finite for every $t \geq 0$ and that $F'_{+}(0)$ exists and is finite. Show Conversely, suppose that $F(t)$ is limite for every $t \ge$
that $\sum_{n=1}^{\infty} na_n < \infty$. (Hint: Apply Fatou's Lemma)
- 3. Let $a_{nm} \in \mathbb{R}$, for $n = 1, 2, 3, ...$ and $m = 1, 2, 3, ...$ Suppose $|a_{nm}| \leq 1$, for all n, m . Show that there exists a subsequence n_k such that $\lim_{k\to\infty} a_{n_k m} = b_m$ exists for all m.