PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

January 2002

Part I. Do three (3) of these problems.

I.1. Show that

$$\lim_{n \to \infty} \sum_{k=0}^{2n} \frac{k}{k^2 + n^2} = \frac{1}{2} \ln 5.$$

I.2. Let $\{x_k\}_{k=1}^{\infty}$ be a sequence of real numbers satisfying (a) $\lim_{n\to\infty} \frac{x_1 + \dots + x_n}{n} = L$, and (b) $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n k(x_k - x_{k-1}) = 0$; (we set $x_0 = 0$). Prove that $\lim_{n\to\infty} x_n = L$.

I.3. Suppose f is Riemann integrable on [a, b] and f(x) = 0 for all $x \in [a, b] \cap \mathbb{Q}$. Prove that $\int_a^b f(x) dx = 0$.

I.4. Let $f \in C^1[0,1], \delta = \min_{[0,1]} |f'(x)|$, and $\Delta = \max_{[0,1]} |f'(x)|$. Prove that

$$\frac{1}{12}\delta^2 \le \int_0^1 f^2(x)\,dx - \left(\int_0^1 f(x)\,dx\right)^2 \le \frac{1}{12}\,\Delta^2.$$

Hint: expand $\int_0^1 \int_0^1 (f(x) - f(y))^2 dx dy$, Fubini and mean value theorem.

JANUARY 2002

Part II. Do two (2) of these problems.

II.1. Let $f_n(x) = n^{1/2} e^{-nx}$ on [0, 1]. Prove that

- (a) $f_n(x) \to 0$ pointwise on (0, 1],

- (a) $f_0^{(1)}(x) = 0$ For $x \in C$ for all n, (b) $\int_0^1 f_n(x)^2 dx \le C$ for all n, (c) f_n does not converge in $L^2(0,1)$, (d) $\int_0^1 f_n(x) g(x) dx \to 0$ for each $g \in L^2(0,1)$.

Hint: for (d) prove it first for simple functions and then use the density of the simple functions in $L^2(0,1)$.

II.2. Let $g : \mathbb{R} \to \mathbb{R}$ be continuous and invertible. Suppose that for each Lebesgue measurable set A, the set g(A) is Lebesgue measurable and define the measure $\mu(A) =$ |g(A)|. Prove that the measure μ is absolutely continuous with respect to Lebesgue measure if and only if g is an absolutely continuous function, and in that case $\frac{d\mu}{dx} = g'(x)$ a.e.

II.3. Let f_k be a sequence of functions in $L^2(\mathbb{R}^n)$. Suppose that $||f_k||_{L^2(\mathbb{R}^n)} \leq M$ for all k, and $f_k \to f$ a.e. Prove that

$$\int_{\mathbb{R}^n} f_k(x) g(x) \, dx \to \int_{\mathbb{R}^n} f(x) g(x) \, dx,$$

for all $g \in L^2(\mathbb{R}^n)$.