PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

January 2001

Part I. Do three (3) of these problems.

I.1. Let (a_n) and (ε_n) be sequences of positive numbers. Suppose that $\lim_{n\to\infty} \varepsilon_n = 0$, and there exists $0 \le \beta < 1$ such that

$$a_{n+1} \leq \beta a_n + \varepsilon_n$$
, for all n .

Prove that $\lim_{n\to\infty} a_n = 0$.

I.2. Let \mathcal{F} be a uniformly bounded and equicontinuous family of functions in C[a, b]. Prove that the function

$$g(x) = \sup\{f(x) : f \in \mathcal{F}\}$$

is continuous in [a, b].

I.3. Let $\phi \in L^1(\mathbb{R})$, $\phi \geq 0$, and $f(x,t) = e^{-|x|} \chi_{[-\phi(t),\phi(t)]}(x)$. Prove that $f \in L^1(\mathbb{R}^2)$. Here χ_E denotes the characteristic function of the set E.

I.4. Let $E \subset \mathbb{R}^n$ with $|E| < \infty$, $f_k \in L^1(E)$ such that $f_k \to 0$ in measure, and $||f_k||_{L^1(E)} \leq M$ for all k. Prove that

$$\int_E |f_k g|^{1/2} \, dx \to 0, \qquad \text{as } k \to \infty,$$

for all $g \in L^1(E)$.

Typeset by \mathcal{AMS} -TEX

JANUARY 2001

Part II. Do two (2) of these problems.

II.1. Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of measurable functions and $a \in \mathbb{R}$. Suppose that

$$\sum_{n=1}^{\infty} |\{x \in \mathbb{R} : f_n(x) > a\}| < \infty.$$

Prove that $\limsup_{n\to\infty} f_n(x) \leq a$, for a.e. $x \in \mathbb{R}$.

II.2. Let $K \subset \mathbb{R}^n$ be compact and $\{B_k\}_{k=1}^{\infty}$ a sequence of open balls whose union covers K. Prove that there exists a number $\varepsilon > 0$ such that given $x \in K$, the ball with center x and radius ε is contained in some B_k .

HINT: for each $x \in K$ pick a ball B(x, r(x)) such that the ball B(x, 2r(x)) is contained in some B_k . Select a finite subcovering of B(x, r(x)) and take the minimum of the corresponding r(x).

II.3. An ellipsoid in \mathbb{R}^n centered at the point x_0 is a set of the form

$$E = \{ x \in \mathbb{R}^n : \langle A(x - x_0), x - x_0 \rangle \le 1 \},\$$

where A is an $n \times n$ positive definite and symmetric matrix, and \langle , \rangle denotes the Euclidean inner product. Use the formula of change of variables for multiple integrals to show that the volume of E equals

$$\frac{\omega_n}{\sqrt{\det A}}$$

with ω_n the volume of the unit ball.