PH.D. COMPREHENSIVE EXAMINATION REAL ANALYSIS SECTION

January 1996

Part I. Do three (3) of these problems.

I.1. Let $\{a_n\}$ be a sequence of real numbers with the following property: there is a constant $0 < K < 1$ such that

$$
|a_{n+2} - a_{n+1}| \le K|a_{n+1} - a_n|
$$
 for all $n \ge N_0$.

Prove that $\{a_n\}$ converges.

I.2. Let $f : [a, b] \to \mathbb{R}$ be a continuous function and $x_1, \ldots, x_n \in [a, b]$. Show that there exists $z \in [a, b]$ such that

$$
f(z) = \frac{f(x_1) + \dots + f(x_n)}{n}
$$

.

I.3. Give an example of a function $f \in L^p(\mathbb{R})$, $p \geq 1$, such that

$$
\lim_{x \to \infty} f(x) \neq 0.
$$

I.4. (1) Let $\{f_n\}$ be a subsequence of $L^1(\mathbb{R})$ such that $\sum_{n=1}^{\infty} ||f_n||_1 < \infty$. Show that $\sum_{n=1}^{\infty} f_n$ converges absolutely a.e.

(2) Let (X, \mathcal{A}, μ) be a measure space and let $\{A_n\}$ be a subsequence of A. Show that if $\sum_{n=1}^{\infty} \mu(A_m) < \infty$ then $\mu(\limsup A_n) = 0$, where $\limsup A_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n$.

Part II. Do two (2) of these problems.

II.1. Let

$$
F(y) = \int_0^\infty e^{-2x} \cos(2xy) dx, \quad y \in \mathbb{R}.
$$

Show that F satisfies the differential equation

$$
F'(y) + 2yF(y) = 0.
$$

Justify the differentiation under the integral sign.

II.2. Let f be a real valued function defined on a closed bounded interval $[a, b]$. Establish the following:

(1) If f is continuous, f need not be of bounded variation. Consider

$$
f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{cases}
$$

Typeset by $A_{\mathcal{M}}S$ -T_EX

2 JANUARY 1996

- (2) If f satisfies a Lipschitz condition, that is, $|f(x) f(y)| \le M|x y|$ for some positive number M and all $x, y \in [a, b]$, then f is absolutely continuous.
- (3) If f' exists everywhere and is bounded on $[a, b]$, then f is absolutely continuous.

II.3. Let H be a Hilbert space and $y_0 \in H$. Show that there exists $\Lambda \in H^*$ (bounded linear functional on H) different from zero such that

$$
\Lambda(y_0)=\|\Lambda\|_{H^*}\|y_0\|.
$$

(Hint: Either apply the Hahn-Banach theorem with the sublinear functional $p(x) = ||x||$, or construct a bounded linear functional in terms of y_0).